4 research outputs found

    Reduced complement of dopaminergic neurons in the substantia nigra pars compacta of mice with a constitutive “low footprint” genetic knockout of alpha-synuclein

    Get PDF
    Previous studies of the alpha-synuclein null mutant mice on the C57Bl6 genetic background have revealed reduced number of dopaminergic neurons in their substantia nigra pars compacta (SNpc). However, the presence in genomes of the studied mouse lines of additional genetic modifications that affect expression of genes located in a close proximity to the alpha-synuclein-encoding Snca gene makes these data open to various interpretations. To unambiguously demonstrate that the absence of alpha-synuclein is the primary cause of the observed deficit of dopaminergic neurons, we employed a recently produced constituent alpha-synuclein knockout mouse line B6(Cg)-Sncatm1.2Vlb/J. The only modification introduced to the genome of these mice is a substitution of the first coding exon and adjusted short intronic fragments of the Snca gene by a single loxP site. We compared the number of dopaminergic neurons in the SNpc of this line, previously studied B6(Cg)-Sncatm1Rosl/J line and wild type littermate mice. A similar decrease was observed in both knockout lines when compared with wild type mice. In a recently published study we revealed no loss of dopaminergic neurons following conditional inactivation of the Snca gene in neurons of adult mice. Taken together, these results strongly suggest that alpha-synuclein is required for efficient survival or maturation of dopaminergic neurons in the developing SNpc but is dispensable for survival of mature SNpc dopaminergic neurons

    Kinetics of alpha-synuclein depletion in three brain regions following conditional pan-neuronal inactivation of the encoding gene (Snca) by tamoxifen-induced Cre-recombination in adult mice

    Get PDF
    Conditional pan-neuronal inactivation of the Snca gene in 2-month old male and female mice causes dramatic decrease in the level of the encoded protein, alpha-synuclein, in three studied brain regions, namely cerebral cortex, midbrain and striatum, 12 weeks after the last injection of tamoxifen. Kinetics of alpha-synuclein depletion is different in these brain regions with a longer lag period in the cerebral cortex where this protein is normally most abundant. Our results suggest that efficient post-developmental pan-neuronal knockout of alpha-synuclein in adult, i.e. 5- to 6-month old, animals, could be achieved by tamoxifen treatment of 2-month old mice carrying loxP-flanked Snca gene and expressing inducible Cre-ERT2 recombinase under control of the promoter of neuron-specific enolase (NSE) gene

    Synuclein Proteins in MPTP-Induced Death of Substantia Nigra Pars Compacta Dopaminergic Neurons

    No full text
    Parkinson’s disease (PD) is one of the key neurodegenerative disorders caused by a dopamine deficiency in the striatum due to the death of dopaminergic (DA) neurons of the substantia nigra pars compacta. The initially discovered A53T mutation in the alpha-synuclein gene was linked to the formation of cytotoxic aggregates: Lewy bodies in the DA neurons of PD patients. Further research has contributed to the discovery of beta- and gamma-synucleins, which presumably compensate for the functional loss of either member of the synuclein family. Here, we review research from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity models and various synuclein-knockout animals. We conclude that the differences in the sensitivity of the synuclein-knockout animals compared with the MPTP neurotoxin are due to the ontogenetic selection of early neurons followed by a compensatory effect of beta-synuclein, which optimizes dopamine capture in the synapses. Triple-knockout synuclein studies have confirmed the higher sensitivity of DA neurons to the toxic effects of MPTP. Nonetheless, beta-synuclein could modulate the alpha-synuclein function, preventing its aggregation and loss of function. Overall, the use of knockout animals has helped to solve the riddle of synuclein functions, and these proteins could be promising molecular targets for the development of therapies that are aimed at optimizing the synaptic function of dopaminergic neurons
    corecore