1,460 research outputs found

    Diamonds in HD 97048

    Full text link
    We present adaptive optics high angular resolution (\sim0\farcs1) spectroscopic observations in the 3 ÎŒ\mum region of the Herbig Ae/Be star HD 97048. For the first time, we spatially resolve the emission in the diamond features at 3.43 and 3.53 ÎŒ\mum and in the adjacent continuum. Using both the intensity profiles along the slit and reconstructed two-dimensional images of the object, we derive full-width at half-maximum sizes consistent with the predictions for a circumstellar disk seen pole-on. The diamond emission originates in the inner region (Râ‰Č15R \lesssim 15 AU) of the disk.Comment: ApJLetter, in pres

    CARMA interferometric observations of 2MASS J044427+2512: the first spatially resolved observations of thermal emission of a brown dwarf disk

    Get PDF
    We present CARMA 1.3 mm continuum data of the disk surrounding the young brown dwarf 2MASS J044427+2512 in the Taurus molecular cloud. The high angular resolution of the CARMA observations (0.16 arcsec) allows us to spatially resolve for the first time the thermal emission from dust around a brown dwarf. We analyze the interferometric visibilities and constrain the disk outer radius adopting disk models with power-law radial profiles of the dust surface density. In the case of a power-law index equal to or lower than 1, we obtain a disk radius in the range of about 15 - 30 AU, while larger disks are inferred for steeper radial profiles. By combining this information on the disk spatial extent with the sub-mm spectral index of this source we find conclusive evidence for mm-sized grains, or larger, in this brown dwarf disk. We discuss the implications of our results on the models of dust evolution in proto-planetary disks and brown dwarf formation.Comment: 14 pages, 3 figures, Accepted for publication in ApJ Letter

    X-Shooter study of accretion in ρ\rho-Ophiucus: very low-mass stars and brown dwarfs

    Get PDF
    We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Macc with M* when comparing low-mass stars and BDs. Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in some of our recent works in other star-forming regions, and no significant differences in Macc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Macc-M* correlation confirms that Macc in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Ha width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    An extensive VLT/X-Shooter library of photospheric templates of pre-main sequence stars

    Get PDF
    Studies of the formation and evolution of young stars and their disks rely on the knowledge of the stellar parameters of the young stars. The derivation of these parameters is commonly based on comparison with photospheric template spectra. Furthermore, chromospheric emission in young active stars impacts the measurement of mass accretion rates, a key quantity to study disk evolution. Here we derive stellar properties of low-mass pre-main sequence stars without disks, which represent ideal photospheric templates for studies of young stars. We also use these spectra to constrain the impact of chromospheric emission on the measurements of mass accretion rates. The spectra in reduced, flux-calibrated, and corrected for telluric absorption form are made available to the community. We derive the spectral type for our targets by analyzing the photospheric molecular features present in their VLT/X-Shooter spectra by means of spectral indices and comparison of the relative strength of photospheric absorption features. We also measure effective temperature, gravity, projected rotational velocity, and radial velocity from our spectra by fitting them with synthetic spectra with the ROTFIT tool. The targets have negligible extinction and spectral type from G5 to M8. We perform synthetic photometry on the spectra to derive the typical colors of young stars in different filters. We measure the luminosity of the emission lines present in the spectra and estimate the noise due to chromospheric emission in the measurements of accretion luminosity in accreting stars. We provide a calibration of the photospheric colors of young PMS stars as a function of their spectral type in a set of standard broad-band optical and near-infrared filters. For stars with masses of ~ 1.5Msun and ages of ~1-5 Myr, the chromospheric noise converts to a limit of measurable mass accretion rates of ~ 3x10^-10 Msun/yr.Comment: Accepted for publication on Astronomy & Astrophysics. The spectra of the photospheric templates will be uploaded to Vizier, but are already available on request. Abstract shortened for arxiv constraints. Language edited versio

    X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars

    Full text link
    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of forbidden emission lines of low ionization species. At least two separate kinematic components have been identified, one characterised by velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity of few km/s (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus and σ\sigma-Ori observed with the X-Shooter ESO spectrometer. We detect forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar_{star} and the accretion luminosity (or the mass-accretion rate) over a large interval of values (Lstar_{star} ∌10−2−1\sim 10^{-2} - 1 L⊙_\odot; Lacc_{acc} ∌10−5−10−1\sim 10^{-5} - 10^{-1} L⊙_\odot; M˙acc\dot M_{acc} ∌10−11−10−7\sim 10^{-11} - 10^{-7} M⊙_\odot/yr). The lines show the presence of a slow wind (Vpeak108V_{peak}10^8 cm−3^{-3}), warm (T∌5000−10000\sim 5000-10000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from ∌10−12\sim 10^{-12} M⊙_\odot and ∌0.01\sim 0.01 AU3^3 for Mstar_{star}∌0.1\sim 0.1 M⊙_\odot, to ∌3×10−10\sim 3 \times 10^{-10} M⊙_\odot and ∌1\sim 1 AU3^3 for Mstar_{star}∌1\sim 1 M⊙_\odot, respectively. These results provide quite stringent constraints to wind models in low mass young stars, that need to be explored further

    On the gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    Get PDF
    Transitional disks (TDs) are thought to be a late evolutionary stage of protoplanetary disks with dust depleted inner regions. The mechanism responsible for this depletion is still under debate. To constrain the models it is mandatory to have a good understanding of the properties of the gas content of the inner disk. Using X-Shooter broad band -UV to NIR- medium resolution spectroscopy we derive the stellar, accretion, and wind properties of a sample of 22 TDs. The analysis of these properties allows us to put strong constraints on the gas content in a region very close to the star (<0.2 AU) which is not accessible with any other observational technique. We fit the spectra with a self-consistent procedure to derive simultaneously SpT,Av,and mass accretion rates (Macc) of the targets. From forbidden emission lines we derive the wind properties of the targets. Comparing our findings to values for cTTs, we find that Macc and wind properties of 80% of the TDs in our sample, which is strongly biased towards strongly accreting objects, are comparable to those of cTTs. Thus, there are (at least) some TDs with Macc compatible with those of cTTs, irrespective of the size of the dust inner hole.Only in 2 cases Macc are much lower, while the wind properties are similar. We do not see any strong trend of Macc with the size of the dust depleted cavity, nor with the presence of a dusty optically thick disk close to the star. In the TDs in our sample there is a gas rich inner disk with density similar to that of cTTs disks. At least for some TDs, the process responsible of the inner disk clearing should allow for a transfer of gas from the outer disk to the inner region. This should proceed at a rate that does not depend on the physical mechanism producing the gap seen in the dust emission and results in a gas density in the inner disk similar to that of unperturbed disks around stars of similar mass.Comment: Accepted on Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    Photoevaporation of Circumstellar Disks due to External FUV Radiation in Stellar Aggregates

    Full text link
    When stars form in small groups (N = 100 - 500 members), their circumstellar disks are exposed to little EUV radiation but a great deal of FUV radiation from massive stars in the group. This paper calculates mass loss rates for circumstellar disks exposed to external FUV radiation. Previous work treated large disks and/or intense radiation fields in which the disk radius exceeds the critical radius (supercritical disks) where the sound speed in the FUV heated layer exceeds the escape speed. This paper shows that significant mass loss still takes place for subcritical systems. Some of the gas extends beyond the disk edge (above the disk surface) to larger distances where the temperature is higher, the escape speed is lower, and an outflow develops. The evaporation rate is a sensitive function of the stellar mass and disk radius, which determine the escape speed, and the external FUV flux, which determines the temperature structure of the flow. Disks around red dwarfs are readily evaporated and shrink to disk radii of 15 AU on short time scales (10 Myr) when exposed to moderate FUV fields with G0G_0 = 3000. Although disks around solar type stars are more durable, these disks shrink to 15 AU in 10 Myr for intense FUV radiation fields with G0G_0 = 30,000; such fields exist in the central 0.7 pc of a cluster with N = 4000 stars. If our solar system formed in the presence of such strong FUV radiation fields, this mechanism could explain why Neptune and Uranus in our solar system are gas poor, whereas Jupiter and Saturn are gas rich. This mechanism for photoevaporation can also limit the production of Kuiper belt objects and can suppress giant planet formation in sufficiently large clusters, such as the Hyades, especially for disks associated with low mass stars.Comment: 49 pages including 12 figures; accepted to Ap

    Star formation in clusters: early sub-clustering in the Serpens core

    Get PDF
    We present high resolution interferometric and single dish observations of molecular gas in the Serpens cluster-forming core. Star formation does not appear to be homogeneous throughout the core, but is localised in spatially- and kinematically-separated sub-clusters. The stellar (or proto-stellar) density in each of the sub-clusters is much higher than the mean for the entire Serpens cluster. This is the first observational evidence for the hierarchical fragmentation of proto-cluster cores suggested by cluster formation models.Comment: 11 pages, 3 Figures, ApJ Letters in pres
    • 

    corecore