37 research outputs found

    The role of PQL genes in response to salinity tolerance in Arabidopsis and barley

    No full text
    While soil salinity is a global problem, how salt enters plant root cells from the soil solution remains underexplored. Non-selective cation channels (NSCCs) are suggested to be the major pathway for the entry of sodium ions (Na), yet their genetic constituents remain unknown. Yeast PQ loop (PQL) proteins were previously proposed to encode NSCCs, but the role of PQLs in plants is unknown. The hypothesis tested in this research is that PQL proteins constitute NSCCs mediating some of the Na influx into the root, contributing to ion accumulation and the inhibition of growth in saline conditions. We identified plant PQL homologues, and studied the role of one clade of PQL genes in Arabidopsis and barley. Using heterologous expression of AtPQL1a and HvPQL1 in HEK293 cells allowed us to resolve sizable inwardly directed currents permeable to monovalent cations such as Na, K, or Li upon membrane hyperpolarization. We observed that GFP-tagged PQL proteins localized to intracellular membrane structures, both when transiently over-expressed in tobacco leaf epidermis and in stable Arabidopsis transformants. Expression of AtPQL1a, AtPQL1b, and AtPQL1c was increased by salt stress in the shoot tissue compared to non-stressed plants. Mutant lines with altered expression of AtPQL1a, AtPQL1b, and AtPQL1c developed larger rosettes in saline conditions, while altered levels of AtPQL1a severely reduced development of lateral roots in all conditions. This study provides the first step toward understanding the function of PQL proteins in plants and the role of NSCC in salinity tolerance

    FGF12 is a candidate Brugada syndrome locus.

    No full text
    BACKGROUND Less than 30% of the cases of Brugada syndrome (BrS) have an identified genetic cause. Of the known BrS-susceptibility genes, loss-of-function mutations in SCN5A or CACNA1C and their auxiliary subunits are most common. On the basis of the recent demonstration that fibroblast growth factor(FGF) homologous factors(FHFs; FGF11-FGF14) regulate cardiac Na+ and Ca2+ channel currents, we hypothesized that FHFs are candidate BrS loci. OBJECTIVE The goal of this study was to test whether FGF12 is a candidate BrS locus. METHODS We used quantitative polymerase chain reaction to identify the major FHF expressed in the human ventricle and then queried a phenotype-positive, genotype-negative BrS biorepository for FHF mutations associated with BrS. We queried the effects of an identified mutant with biochemical analyses combined with electrophysiological assessment. We designed a novel rat ventricular cardiomyocyte system in which we swapped the endogenous FHF with the identified mutant and defined its effects on multiple ionic currents in their native milieu and on the cardiac action potential. RESULTS We identified FGF12 as the major FHF expressed in the human ventricle. In 102 individuals in the biorepository, we identified a single missense mutation in FGF12-B (Q7R-FGF12). The mutant reduced binding to the Na(V)1.5 C terminus, but not to junctophilin-2. In adult rat cardiac myocytes, Q7R-FGF12, but not wild-type FGF12, reduced Na+ channel current density and availability without affecting Ca2+ channel function. Furthermore, the mutant, but not wild-type FGF12, reduced action potential amplitude, which is consistent with amutant-induced loss of Na+ channel function. CONCLUSIONS These multilevel investigations strongly suggest that Q7R-FGF12 is a disease-associated BrS mutation. Moreover, these data suggest for the first time that FHF effects on Na+ and Ca2+ channels are separable. Most significantly, this study establishes a new method to analyze effects of human arrhythmogenic mutations on cardiac ionic currents

    Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada Syndrome genetic testing: Implications for genetic testing.

    Get PDF
    Objectives The aim of this study was to provide the spectrum and prevalence of mutations in the 12 Brugada syndrome (BrS)-susceptibility genes discovered to date in a single large cohort of unrelated BrS patients. Background BrS is a potentially lethal heritable arrhythmia syndrome diagnosed electrocardiographically by coved-type ST-segment elevation in the right precordial leads (V-1 to V-3; type 1 Brugada electrocardiographic [ECG] pattern) and the presence of a personal/family history of cardiac events. Methods Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, comprehensive mutational analysis of BrS1-through BrS12-susceptibility genes was performed in 129 unrelated patients with possible/probable BrS (46 with clinically diagnosed BrS [ECG pattern plus personal/family history of a cardiac event] and 83 with a type 1 BrS ECG pattern only). Results Overall, 27 patients (21%) had a putative pathogenic mutation, absent in 1,400 Caucasian reference alleles, including 21 patients with an SCN5A mutation, 2 with a CACNB2B mutation, and 1 each with a KCNJ8 mutation, a KCND3 mutation, an SCN1Bb mutation, and an HCN4 mutation. The overall mutation yield was 23% in the type 1 BrS ECG pattern-only patients versus 17% in the clinically diagnosed BrS patients and was significantly greater among young men <20 years of age with clinically diagnosed BrS and among patients who had a prolonged PQ interval. Conclusions We identified putative pathogenic mutations in similar to 20% of our BrS cohort, with BrS genes 2 through 12 accounting for <5%. Importantly, the yield was similar between patients with only a type 1 BrS ECG pattern and those with clinically established BrS. The yield approaches 40% for SCN5A-mediated BrS (BrS1) when the PQ interval exceeds 200 ms. Calcium channel-mediated BrS is extremely unlikely in the absence of a short QT interval

    Characterization of <em>SEMA3A</em>-encoded semaphorin as a naturally occurring Kv4.3 protein inhibitor and its contribution to Brugada syndrome.

    No full text
    RATIONALE: Semaphorin 3A (SEMA3A)-encoded semaphorin is a chemorepellent that disrupts neural patterning in the nervous and cardiac systems. In addition, SEMA3A has an amino acid motif that is analogous to hanatoxin, an inhibitor of voltage-gated K channels. SEMA3A-knockout mice exhibit an abnormal ECG pattern and are prone to ventricular arrhythmias and sudden cardiac death. OBJECTIVE:: Our aim was to determine whether SEMA3A is a naturally occurring protein inhibitor of Kv4.3 (Ito) channels and its potential contribution to Brugada syndrome. METHODS AND RESULTS:: Kv4.3, Nav1.5, Cav1.2, or Kv4.2 were coexpressed or perfused with SEMA3A in HEK293 cells, and electrophysiological properties were examined via whole-cell patch clamp technique. SEMA3A selectively altered Kv4.3 by significantly reducing peak current density without perturbing Kv4.3 cell surface protein expression. SEMA3A also reduced Ito current density in cardiomyocytes derived from human-induced pluripotent stem cells. Disruption of a putative toxin binding domain on Kv4.3 was used to assess physical interactions between SEMA3A and Kv4.3. These findings in combination with coimmunoprecipitations of SEMA3A and Kv4.3 revealed a potential direct binding interaction between these proteins. Comprehensive mutational analysis of SEMA3A was performed on 198 unrelated SCN5A genotype-negative patients with Brugada syndrome, and 2 rare SEMA3A missense mutations were identified. The SEMA3A mutations disrupted SEMA3A&#39;s ability to inhibit Kv4.3 channels, resulting in a significant gain of Kv4.3 current compared with wild-type SEMA3A. CONCLUSIONS:: This study is the first to demonstrate SEMA3A as a naturally occurring protein that selectively inhibits Kv4.3 and SEMA3A as a possible Brugada syndrome susceptibility gene through a Kv4.3 gain-of-function mechanism

    A novel disease gene for Brugada syndrome: Sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5.

    No full text
    Background-Mutations in genes including SCN5A encoding the a-subunit of the cardiac sodium channel (hNav1.5) cause Brugada syndrome via altered function of cardiac ion channels, but more than two-thirds of Brugada syndrome remains pathogenetically elusive. T-tubules and sarcoplasmic reticulum are essential in excitation of cardiomyocytes, and sarcolemmal membrane-associated protein (SLMAP) is a protein of unknown function localizing at T-tubules and sarcoplasmic reticulum. Methods and Results-We analyzed 190 unrelated Brugada syndrome patients for mutations in SLMAP. Two missense mutations, Val269Ile and Glu710Ala, were found in heterozygous state in 2 patients but were not found in healthy individuals. Membrane surface expression of hNav1.5 in the transfected cells was affected by the mutations, and silencing of mutant SLMAP by small interfering RNA rescued the surface expression of hNav1.5. Whole-cell patch-clamp recordings of hNav1.5-expressing cells transfected with mutant SLMAP confirmed the reduced hNav1.5 current. Conclusions-The mutations in SLMAP may cause Brugada syndrome via modulating the intracellular trafficking of hNav1.5 channel. (Circ Arrhythm Electrophysiol. 2012;5:1098-1107.

    Long QT syndrome-associated mutations in intrauterine fetal death

    No full text
    Importance: Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem. Objective: To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases. Design, Setting, and Patients: In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants. Main Outcomes and Measures: Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording. Results: The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2[1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10 000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both K V7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation (33.2-week male) exhibited a loss of function consistent with in utero LQTS type 2. In addition, 5 intrauterine fetal deaths hosted SCN5A rare nonsynonymous genetic variants (p.T220I, p.R1193Q, involving 2 cases, and p.P2006A, involving 2 cases) that conferred in vitro electrophysiological characteristics consistent with potentially pro-arrhythmic phenotypes. Conclusions and Relevance: In this molecular genetic evaluation of 91 cases of intrauterine fetal death, missense mutations associated with LQTS susceptibility were discovered in 3 cases (3.3%) and overall, genetic variants leading to dysfunctional LQTS-associated ion channels in vitro were discovered in 8 cases (8.8%). These preliminary findings may provide insights into mechanisms of some cases of stillbirth

    Loss-of-function of the voltage-gated sodium channel NaV1.5 (Channelopathies) in patients with irritable bowel syndrome

    No full text
    Background &amp;amp; Aims SCN5A encodes the α-subunit of the voltage-gated sodium channel NaV1.5. Many patients with cardiac arrhythmias caused by mutations in SCN5A also have symptoms of irritable bowel syndrome (IBS). We investigated whether patients with IBS have SCN5A variants that affect the function of NaV1.5. Methods We performed genotype analysis of SCN5A in 584 persons with IBS and 1380 without IBS (controls). Mutant forms of SCN5A were expressed in human embryonic kidney-293 cells, and functions were assessed by voltage clamp analysis. A genome-wide association study was analyzed for an association signal for the SCN5A gene, and replicated in 1745 patients in 4 independent cohorts of IBS patients and controls. Results Missense mutations were found in SCN5A in 13 of 584 patients (2.2%, probands). Diarrhea-predominant IBS was the most prevalent form of IBS in the overall study population (25%). However, a greater percentage of individuals with SCN5A mutations had constipation-predominant IBS (31%) than diarrhea-predominant IBS (10%; P &amp;lt;.05). Electrophysiologic analysis showed that 10 of 13 detected mutations disrupted NaV1.5 function (9 loss-of-function and 1 gain-of-function function). The p. A997T-NaV1.5 had the greatest effect in reducing NaV1.5 function. Incubation of cells that expressed this variant with mexiletine restored their sodium current and administration of mexiletine to 1 carrier of this mutation (who had constipation-predominant IBS) normalized their bowel habits. In the genome-wide association study and 4 replicated studies, the SCN5A locus was strongly associated with IBS. Conclusions About 2% of patients with IBS carry mutations in SCN5A. Most of these are loss-of-function mutations that disrupt Na V1.5 channel function. These findings provide a new pathogenic mechanism for IBS and possible treatment options. © 2014 by the AGA Institute
    corecore