979 research outputs found

    A Finite-Time Cutting Plane Algorithm for Distributed Mixed Integer Linear Programming

    Get PDF
    Many problems of interest for cyber-physical network systems can be formulated as Mixed Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithm to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. In the proposed algorithm, at each communication round, agents solve locally a small LP, generate suitable cutting planes, namely intersection cuts and cost-based cuts, and communicate a fixed number of active constraints, i.e., a candidate optimal basis. We prove that, if the cost is integer, the algorithm converges to the lexicographically minimal optimal solution in a finite number of communication rounds. Finally, through numerical computations, we analyze the algorithm convergence as a function of the network size.Comment: 6 pages, 3 figure

    Generalized Assignment for Multi-Robot Systems via Distributed Branch-And-Price

    Get PDF
    In this paper, we consider a network of agents that has to self-assign a set of tasks while respecting resource constraints. One possible formulation is the Generalized Assignment Problem, where the goal is to find a maximum payoff while satisfying capability constraints. We propose a purely distributed branch-and-price algorithm to solve this problem in a cooperative fashion. Inspired by classical (centralized) branch-and-price schemes, in the proposed algorithm each agent locally solves small linear programs, generates columns by solving simple knapsack problems, and communicates to its neighbors a fixed number of basic columns. We prove finite-time convergence of the algorithm to an optimal solution of the problem. Then, we apply the proposed scheme to a generalized assignment scenario in which a team of robots has to serve a set of tasks. We implement the proposed algorithm in a ROS testbed and provide experiments for a team of heterogeneous robots solving the assignment problem

    Distributed Submodular Minimization over Networks: a Greedy Column Generation Approach

    Get PDF
    Submodular optimization is a special class of combinatorial optimization arising in several machine learning problems, but also in cooperative control of complex systems. In this paper, we consider agents in an asynchronous, unreliable and time-varying directed network that aim at cooperatively solving submodular minimization problems in a fully distributed way. The challenge is that the (submodular) objective set-function is only partially known by agents, that is, each one is able to evaluate the function only for subsets including itself. We propose a distributed algorithm based on a proper linear programming reformulation of the combinatorial problem. Our algorithm builds on a column generation approach in which each agent maintains a local candidate basis and locally generates columns with a suitable greedy inner routine. A key interesting feature of the proposed algorithm is that the pricing problem, which involves an exponential number of constraints, is solved by the agents through a polynomial time greedy algorithm. We prove that the proposed distributed algorithm converges in finite time to an optimal solution of the submodular minimization problem and we corroborate the theoretical results by performing numerical computations on instances of the ss--tt minimum graph cut problem.Comment: 12 pages, 4 figures, 57th IEEE Conference on Decision and Contro

    Multi-Robot Pickup and Delivery via Distributed Resource Allocation

    Get PDF
    In this article, we consider a large-scale instance of the classical pickup-and-delivery vehicle routing problem that must be solved by a network of mobile cooperating robots. Robots must self-coordinate and self-allocate a set of pickup/delivery tasks while minimizing a given cost figure. This results in a large, challenging mixed-integer linear problem that must be cooperatively solved without a central coordinator. We propose a distributed algorithm based on a primal decomposition approach that provides a feasible solution to the problem in finite time. An interesting feature of the proposed scheme is that each robot computes only its own block of solution, thereby preserving privacy of sensible information. The algorithm also exhibits attractive scalability properties that guarantee solvability of the problem even in large networks. To the best of our knowledge, this is the first attempt to provide a scalable distributed solution to the problem. The algorithm is first tested through Gazebo simulations on a ROS 2 platform, highlighting the effectiveness of the proposed solution. Finally, experiments on a real testbed with a team of ground and aerial robots are provided

    A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions

    Full text link
    Several interesting problems in multi-robot systems can be cast in the framework of distributed optimization. Examples include multi-robot task allocation, vehicle routing, target protection and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this paper, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss their implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots

    CrazyChoir: Flying Swarms of Crazyflie Quadrotors in ROS 2

    Full text link
    This paper introduces CrazyChoir, a modular Python framework based on the Robot Operating System (ROS) 2. The toolbox provides a comprehensive set of functionalities to simulate and run experiments on teams of cooperating Crazyflie nano-quadrotors. Specifically, it allows users to perform realistic simulations over robotic simulators as, e.g., Webots and includes bindings of the firmware control and planning functions. The toolbox also provides libraries to perform radio communication with Crazyflie directly inside ROS 2 scripts. The package can be thus used to design, implement and test planning strategies and control schemes for a Crazyflie nano-quadrotor. Moreover, the modular structure of CrazyChoir allows users to easily implement online distributed optimization and control schemes over multiple quadrotors. The CrazyChoir package is validated via simulations and experiments on a swarm of Crazyflies for formation control, pickup-and-delivery vehicle routing and trajectory tracking tasks. CrazyChoir is available at https://github.com/OPT4SMART/crazychoir
    • …
    corecore