69 research outputs found

    energy [r]evolution: A Sustainable Latin American Energy Outlook

    Get PDF
    This publication provides stimulating analysis on future scenarios of energy use, which focus on a range of technologies that are expected to emerge in the coming years and decades.There is now universal recognition of the fact that new technologies and much greater use of some that already exist provide the most hopeful prospects for mitigation of emissions of GHGs. It is for this reason that the International Energy Agency, which in the past pursued an approach based on a single time path of energy demand and supply, has now developed alternative scenarios that incorporate future technological changes. In the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) as well, technology is included as a crosscutting theme in recognition of the fact that an assessment of technological options would be important both for mitigation as well as adaptation measures for tackling climate change. The scientific evidence on the need for urgent action on the problem of climate change has now become stronger and convincing. Future solutions would lie in the use of existing renewable energy technologies, greater efforts at energy efficiency and the dissemination of decentralized energy technologies and options. This particular publication provides much analysis and well-researched material to stimulate thinking on options that could be adopted in these areas. It is expected that readers who are knowledgeable in the field as well as those who are seeking an understanding of the subjects covered in the ensuing pages would greatly benefit from reading this publication

    On the History and Future of 100% Renewable Energy Systems Research

    Get PDF
    Research on 100% renewable energy systems is a relatively recent phenomenon. It was initiated in the mid-1970s, catalyzed by skyrocketing oil prices. Since the mid-2000s, it has quickly evolved into a prominent research field encompassing an expansive and growing number of research groups and organizations across the world. The main conclusion of most of these studies is that 100% renewables is feasible worldwide at low cost. Advanced concepts and methods now enable the field to chart realistic as well as cost- or resource-optimized and efficient transition pathways to a future without the use of fossil fuels. Such proposed pathways in turn, have helped spur 100% renewable energy policy targets and actions, leading to more research. In most transition pathways, solar energy and wind power increasingly emerge as the central pillars of a sustainable energy system combined with energy efficiency measures. Cost-optimization modeling and greater resource availability tend to lead to higher solar photovoltaic shares, while emphasis on energy supply diversification tends to point to higher wind power contributions. Recent research has focused on the challenges and opportunities regarding grid congestion, energy storage, sector coupling, electrification of transport and industry implying power-to-X and hydrogen-to-X, and the inclusion of natural and technical carbon dioxide removal (CDR) approaches. The result is a holistic vision of the transition towards a net-negative greenhouse gas emissions economy that can limit global warming to 1.5°C with a clearly defined carbon budget in a sustainable and cost-effective manner based on 100% renewable energy-industry-CDR systems. Initially, the field encountered very strong skepticism. Therefore, this paper also includes a response to major critiques against 100% renewable energy systems, and also discusses the institutional inertia that hampers adoption by the International Energy Agency and the Intergovernmental Panel on Climate Change, as well as possible negative connections to community acceptance and energy justice. We conclude by discussing how this emergent research field can further progress to the benefit of society

    Relationship between cardiac deformation parameters measured by cardiovascular magnetic resonance and aerobic fitness in endurance athletes

    Get PDF
    Background: Athletic training leads to remodelling of both left and right ventricles with increased myocardial mass and cavity dilatation. Whether changes in cardiac strain parameters occur in response to training is less well established. In this study we investigated the relationship in trained athletes between cardiovascular magnetic resonance (CMR) derived strain parameters of cardiac function and fitness. Methods: 35 endurance athletes and 35 age and sex matched controls underwent CMR at 3.0T including cine imaging in multiple planes and tissue tagging by spatial modulation of magnetization (SPAMM). CMR data were analysed quantitatively reporting circumferential strain and torsion from tagged images and left and right ventricular longitudinal strain from feature tracking of cine images. Athletes performed a maximal ramp-incremental exercise test to determine the lactate threshold (LT) and maximal oxygen uptake (V̇O2max). Results: LV circumferential strain at all levels, LV twist and torsion, LV late diastolic longitudinal strain rate, RV peak longitudinal strain and RV early and late diastolic longitudinal strain rate were all lower in athletes than controls. On multivariable linear regression only LV torsion (beta=-0.37, P=0.03) had a significant association with LT. Only RV longitudinal late diastolic strain rate (beta=-0.35, P=0.03) had a significant association with V̇O2max. Conclusions: This cohort of endurance athletes had lower LV circumferential strain, LV torsion and biventricular diastolic strain rates than controls. Increased LT, which is a major determinant of performance in endurance athletes, was associated with decreased LV torsion. Further work is needed to understand the mechanisms by which this occurs

    Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and <it>p,p'</it>-DDE in infants.</p> <p>Methods</p> <p>Prenatal exposure to PCBs and <it>p,p'</it>-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age.</p> <p>Results</p> <p>Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-<it>ortho </it>PCB (CB-105, CB-118, CB-156, CB-167) and di-<it>ortho </it>PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-<it>ortho </it>PCB, and <it>p,p'</it>-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to <it>p,p'</it>-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and <it>p,p'</it>-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders.</p> <p>Conclusion</p> <p>This hypothesis generating study suggests that background exposure to PCBs and <it>p,p'</it>-DDE early in life modulate immune system development. Strong correlations between mono- and di-<it>ortho </it>PCBs, and <it>p,p'</it>-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and <it>p,p'</it>-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.</p

    On the history and future of 100% renewable energy systems research

    Get PDF
    Research on 100% renewable energy systems is a relatively recent phenomenon. It was initiated in the mid-1970s, catalyzed by skyrocketing oil prices. Since the mid-2000s, it has quickly evolved into a prominent research field encompassing an expansive and growing number of research groups and organizations across the world. The main conclusion of most of these studies is that 100% renewables is feasible worldwide at low cost. Advanced concepts and methods now enable the field to chart realistic as well as cost- or resource-optimized and efficient transition pathways to a future without the use of fossil fuels. Such proposed pathways in turn, have helped spur 100% renewable energy policy targets and actions, leading to more research. In most transition pathways, solar energy and wind power increasingly emerge as the central pillars of a sustainable energy system combined with energy efficiency measures. Cost-optimization modeling and greater resource availability tend to lead to higher solar photovoltaic shares, while emphasis on energy supply diversification tends to point to higher wind power contributions. Recent research has focused on the challenges and opportunities regarding grid congestion, energy storage, sector coupling, electrification of transport and industry implying power-to-X and hydrogen-to-X, and the inclusion of natural and technical carbon dioxide removal (CDR) approaches. The result is a holistic vision of the transition towards a net-negative greenhouse gas emissions economy that can limit global warming to 1.5ËšC with a clearly defined carbon budget in a sustainable and cost-effective manner based on 100% renewable energy-industry-CDR systems. Initially, the field encountered very strong skepticism. Therefore, this paper also includes a response to major critiques against 100% renewable energy systems, and also discusses the institutional inertia that hampers adoption by the International Energy Agency and the Intergovernmental Panel on Climate Change, as well as possible negative connections to community acceptance and energy justice. We conclude by discussing how this emergent research field can further progress to the benefit of society

    Ensiklopedi Etika Islam: Begini Semestinya Muslim Berperilaku

    No full text

    Konsep & tuntunan Praktis Basis Data

    No full text

    One Earth Climate Model&mdash;Integrated Energy Assessment Model to Develop Industry-Specific 1.5 &deg;C Pathways with High Technical Resolution for the Finance Sector

    No full text
    According to the IPCC, a global carbon budget of 400 GtCO2 is required to limit the temperature rise to 1.5 &deg;C with a 67% likelihood by 2050. The finance industry is increasingly committed to ambitious climate targets. In this article, we describe the detailed methodology and energy model architecture of a MATLAB-based integrated energy assessment model for industry-specific 1.5 &deg;C pathways, with a high technical resolution of target parameters as key performance indicators (KPIs). The additionality of OECM 2.0 is the high technical resolution in terms of the level of detail of industry-specific energy demand and supply parameters that can be modeled&mdash;a prerequisite to define industry-specific KPIs. We found that a database of industry-sector-specific energy demands and energy intensities, with a consistent methodology, is required to improve the accuracy of calculations in future research. We supplement the technical documentation with the results for a transport scenario

    The ‘Global Stocktake’ and the remaining carbon budgets for G20 countries to limit global temperature rise to +1.5 °C

    No full text
    Abstract The G20 brings together the world's major economies. Its members represent 85% of global GDP, 75% of international trade, and two-thirds of the world's population. According to the Intergovernmental Panel on Climate Change, the total remaining global carbon budget required to limit the world's temperature increase to 1.5 °C (with 67% likelihood) is 400 GtCO2, decreasing to 50% likelihood if emissions reach 500 GtCO2 between 2020 and 2050. The UNFCCC's ‘Global Stocktake’ addresses the distribution of the remaining carbon budget to countries and industry sectors, to assess the technical, financial, and policy measures required for decarbonization and the national and international responsibilities involved. In this paper, the decarbonization pathways for all G20 member countries with high technical resolution, are broken down into key industry sectors. The energy-related national carbon budgets necessary to maintain the remaining global carbon budget between 400 GtCO2 and 500 GtCO2 are calculated and a new methodology how a fair distribution can be achieved, considering the historical emissions and economic situations of all G20 countries is presented
    • …
    corecore