98 research outputs found

    Shiga Toxin Binding to Glycolipids and Glycans

    Get PDF
    Background: Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable. Methodology: We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells. Results: By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells

    Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal

    Get PDF
    Unlike most known flaviviruses (Family, Flaviviridae: Genus, Flavivirus), insect-only flaviviruses are a unique group of flaviviruses that only infect invertebrates. The study of insect-only flaviviruses has increased in recent years due to the discovery and characterization of numerous novel flaviviruses from a diversity of mosquito species around the world. The widespread discovery of these viruses has prompted questions regarding flavivirus evolution and the potential impact of these viruses on the transmission of flaviviruses of public health importance such as WNV. Therefore, we tested the effect of Culex flavivirus Izabal (CxFV Izabal), an insect-only flavivirus isolated from Culex quinquefasciatus mosquitoes in Guatemala, on the growth and transmission of a strain of WNV isolated concurrently from the same mosquito species and location. Prior infection of C6/36 (Aedes albopictus mosquito) cells or Cx. quinquefasciatus with CxFV Izabal did not alter the replication kinetics of WNV, nor did it significantly affect WNV infection, dissemination, or transmission rates in two different colonies of mosquitoes that were fed blood meals containing varying concentrations of WNV. These data demonstrate that CxFV probably does not have a significant effect on WNV transmission efficiency in nature

    A review of African horse sickness and its implications for Ireland

    Get PDF
    African horse sickness is an economically highly important non-contagious but infectious Orbivirus disease that is transmitted by various species of Culicoides midges. The equids most severely affected by the virus are horses, ponies, and European donkeys; mules are somewhat less susceptible, and African donkeys and zebra are refractory to the devastating consequences of infection. In recent years, Bluetongue virus, an Orbivirus similar to African horse sickness, which also utilises Culicoides spp. as its vector, has drastically increased its range into previously unaffected regions in northern Europe, utilising indigenous vector species, and causing widespread economic damage to the agricultural sector. Considering these events, the current review outlines the history of African horse sickness, including information concerning virus structure, transmission, viraemia, overwintering ability, and the potential implications that an outbreak would have for Ireland. While the current risk for the introduction of African horse sickness to Ireland is considered at worst ‘very low’, it is important to note that prior to the 2006 outbreak of Bluetongue in northern Europe, both diseases were considered to be of equal risk to the United Kingdom (‘medium-risk’). It is therefore likely that any outbreak of this disease would have serious socio-economic consequences for Ireland due to the high density of vulnerable equids and the prevalence of Culicoides species, potentially capable of vectoring the virus

    One Health: The global challenge of epidemic and endemic leishmaniasis

    Get PDF
    'One Health' proposes the unification of medical and veterinary sciences with the establishment of collaborative ventures in clinical care, surveillance and control of cross-species disease, education, and research into disease pathogenesis, diagnosis, therapy and vaccination. The concept encompasses the human population, domestic animals and wildlife, and the impact that environmental changes ('environmental health') such as global warming will have on these populations. Visceral leishmaniasis is a perfect example of a small companion animal disease for which prevention and control might abolish or decrease the suffering of canine and human patients, and which aligns well with the One Health approach. In this review we discuss how surveillance for leishmaniases is undertaken globally through the control of anthroponootic visceral leishmaniasis (AVL) and zoonotic visceral leishmaniasis (ZVL). The ZVL epidemic has been managed to date by the culling of infected dogs, treatment of human cases and control of the sandfly vector by insecticidal treatment of human homes and the canine reservoir. Recently, preventive vaccination of dogs in Brazil has led to reduction in the incidence of the canine and human disease. Vaccination permits greater dog owner compliance with control measures than a culling programme. Another advance in disease control in Africa is provided by a surveillance programme that combines remote satellite sensing, ecological modelling, vector surveillance and geo-spatial mapping of the distribution of vectors and of the animal-to-animal or animal-to-human pathogen transmission. This coordinated programme generates advisory notices and alerts on emerging infectious disease outbreaks that may impede or avoid the spreading of visceral leishmaniasis to new areas of the planet as a consequence of global warming

    Host-Species Transferrin Receptor 1 Orthologs Are Cellular Receptors for Nonpathogenic New World Clade B Arenaviruses

    Get PDF
    The ability of a New World (NW) clade B arenavirus to enter cells using human transferrin receptor 1 (TfR1) strictly correlates with its ability to cause hemorrhagic fever. Amapari (AMAV) and Tacaribe (TCRV), two nonpathogenic NW clade B arenaviruses that do not use human TfR1, are closely related to the NW arenaviruses that cause hemorrhagic fevers. Here we show that pseudotyped viruses bearing the surface glycoprotein (GP) of AMAV or TCRV can infect cells using the TfR1 orthologs of several mammalian species, including those of their respective natural hosts, the small rodent Neacomys spinosus and the fruit bat Artibeus jamaicensis. Mutation of one residue in human TfR1 makes it a functional receptor for TCRV, and mutation of four residues makes it a functional receptor for AMAV. Our data support an in vivo role for TfR1 in the replication of most, if not all, NW clade B arenaviruses, and suggest that with modest changes in their GPs the nonpathogenic arenaviruses could use human TfR1 and emerge as human pathogens

    Humoral Immune Responses of Dengue Fever Patients Using Epitope-Specific Serotype-2 Virus-Like Particle Antigens

    Get PDF
    Dengue virus (DENV) is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF) or in its most severe manifestation dengue hemorrhagic fever (DHF). Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E) protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease and immunological correlates of protection, relevant to DENV vaccine development and testing

    Arboviral Etiologies of Acute Febrile Illnesses in Western South America, 2000–2007

    Get PDF
    Over recent decades, the variety and quantity of diseases caused by viruses transmitted to humans by mosquitoes and other arthropods (also known as arboviruses) have increased around the world. One difficulty in studying these diseases is the fact that the symptoms are often non-descript, with patients reporting such symptoms as low-grade fever and headache. Our goal in this study was to use laboratory tests to determine the causes of such non-descript illnesses in sites in four countries in South America, focusing on arboviruses. We established a surveillance network in 13 locations in Ecuador, Peru, Bolivia, and Paraguay, where patient samples were collected and then sent to a central laboratory for testing. Between May 2000 and December 2007, blood serum samples were collected from more than 20,000 participants with fever, and recent arbovirus infection was detected for nearly one third of them. The most common viruses were dengue viruses (genera Flavivirus). We also detected infection by viruses from other genera, including Alphavirus and Orthobunyavirus. This data is important for understanding how such viruses might emerge as significant human pathogens

    Whole Genomes of Chandipura Virus Isolates and Comparative Analysis with Other Rhabdoviruses

    Get PDF
    The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003–2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003–2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV
    corecore