12 research outputs found

    Ross River Virus Disease Reemergence, Fiji, 2003–2004

    Get PDF
    We report 2 clinically characteristic and serologically positive cases of Ross River virus infection in Canadian tourists who visited Fiji in late 2003 and early 2004. This report suggests that Ross River virus is once again circulating in Fiji, where it apparently disappeared after causing an epidemic in 1979 to 1980

    Whole Genomes of Chandipura Virus Isolates and Comparative Analysis with Other Rhabdoviruses

    Get PDF
    The Chandipura virus (CHPV) belonging to the Vesiculovirus genus and Rhabdoviridae family, has recently been associated with a number of encephalitis epidemics, with high mortality in children, in different parts of India. No full length genome sequences of CHPV isolates were available in GenBank and little is known about the molecular markers for pathogenesis. In the present study, we provide the complete genomic sequences of four isolates from epidemics during 2003–2007. These sequences along with the deduced sequence of the prototype isolate of 1965 were analysed using phylogeny, motif search, homology modeling and epitope prediction methods. Comparison with other rhaboviruses was also done for functional extrapolations. All CHPV isolates clustered with the Isfahan virus and maintained several functional motifs of other rhabdoviruses. A notable difference with the prototype vesiculovirus, Vesicular Stomatitis Virus was in the L-domain flanking sequences of the M protein that are known to be crucial for interaction with host proteins. With respect to the prototype isolate, significant additional mutations were acquired in the 2003–2007 isolates. Several mutations in G mapped onto probable antigenic sites. A mutation in N mapped onto regions crucial for N-N interaction and a putative T-cell epitope. A mutation in the Casein kinase II phosphorylation site in P may attribute to increased rates of phosphorylation. Gene junction comparison revealed changes in the M-G junction of all the epidemic isolates that may have implications on read-through and gene transcription levels. The study can form the basis for further experimental verification and provide additional insights into the virulence determinants of the CHPV

    cuhk_etd_tobeprocessed

    No full text
    Hybrid approaches for the remediation and detoxification of toxic recalcitrant industrial wastewater were investigated. The focus was waste metalworking fluid, which was selected as a representative model of other waste streams that are toxic, recalcitrant and that require more sustainable routes of safe disposal. The hybrid approaches included biodegradation, electron beam irradiation and zero-valent nano iron advanced oxidation processes that were employed individually and in sequence employing a factorial design. To compare process performance operationally exhausted and pristine metalworking fluid were compared. Sequential hybrid electron beam irradiation, biological, nanoscale zero-valent iron and biological treatment lead to synergistic detoxification and degradation of both recalcitrant streams, as determined by complementary surrogates and lead to overall improved COD removal of 92.8Β Β±Β 1.4% up from 85.9Β Β±Β 3.4% for the pristine metalworking fluid. Electron beam pre-treatment enabled more effective biotreatment, achieving 69.5Β Β±Β 8% (pΒ =Β 0.005) and 24.6Β Β±Β 4.8% (pΒ =Β 0.044) COD reductions

    Examples of rhabdoviruses reported in Africa.

    No full text
    <p>A map depicting examples of rhabdoviruses isolated in sub-Saharan Africa. This map does not depict the current distribution of rhabdoviruses in Sub-Saharan Africa, nor is it meant as a comprehensive listing of all rhabdoviruses isolated in Africa; rather its purpose is to illustrate that many rhabdoviruses have been discovered throughout Africa over the past half-century. Country refers to the sample’s country of origin. Abbreviations: CAR, Central African Republic; DRC, Democratic Republic of Congo.</p

    Sequencing results and schematic representation of the EKV-1 and -2 genome organization.

    No full text
    <p>(<b>A</b>) Overview of the data generated for each novel rhabdovirus. (<b>B</b>) A schematic showing the assembled genomes, consisting of the following genes: <i>nucleoprotein</i> (N), <i>phosphoprotein</i> (P), <i>matrix</i> (M), <i>U1</i>/<i>U2</i>/<i>U3</i> (uncharacterized accessory proteins), <i>glycoprotein</i> (G), and <i>polymerase</i> (L). We indicate in orange (EKV-1) and blue (EKV-2) segments of the viral genomes that could not be assembled from Illumina reads and instead Sanger sequenced. (<b>C</b>) Coverage plots of the final viral genomes.</p
    corecore