15 research outputs found

    Oral Drugs Against COVID-19.

    Full text link
    BACKGROUND: Five-day oral therapies against early COVID-19 infection have recently been conditionally approved in Europe. In the drug combination nirmatrelvir + ritonavir (nirmatrelvir/r), the active agent, nirmatrelvir, is made bioavailable in clinically adequate amounts by the additional administration of a potent inhibitor of its first-pass metabolism by way of cytochrome P450 [CYP] 3A in the gut and liver. In view of the central role of CYP3A in the clearance of many different kinds of drugs, and the fact that many patients with COVID-19 are taking multiple drugs to treat other conditions, it is important to assess the potential for drug interactions when nirmatrelvir/r is given, and to minimize the risks associated with such interactions. METHODS: We defined the interaction profile of ritonavir on the basis of information derived from two databases (Medline, GoogleScholar), three standard electronic texts on drug interactions, and manufacturer-supplied drug information. We compiled a list of drugs and their potentially relevant interactions, developed a risk min - imization algorithm, and applied it to the substances in question. We also compiled a list of commonly prescribed drugs for which there is no risk of interaction with nirmatrelvir/r. RESULTS: Out of 190 drugs and drug combinations, 57 do not need any special measures when given in combination with brief, low-dose ritonavir treatment, while 15 require dose modification or a therapeutic alternative, 8 can be temporarily discontinued, 9 contraindicate ritonavir use, and 102 should preferably be combined with a different treatment. CONCLUSION: We have proposed measures that are simple to carry out for the main types of drug that can interact with ritonavir. These measures can be implemented under quarantine conditions before starting a 5-day treatment with nirmatrelvir/r

    Pain management in intellectually disabled children: Assessment, treatment, and translational research

    No full text
    The primary focus of pain research in intellectually disabled individuals is still on pain assessment. Several observational pain assessment scales are available, each with its own characteristics, its own target group and its own validated use. Observational studies report differences in the treatment of intra-and postoperative pain of intellectually disabled children and almost all children with intellectual disability have comorbidities that need to be addressed. The scope of research has started to broaden. In this review we aim to answer the question: Can we integrate validated ways of pain assessment and postoperative pain treatment in intellectually disabled children to develop specific analgesic algorithms? Regrettably there is little knowledge on possible interaction effects and other relevant pharmacological issues. Possible genotype-phenotype associations related to pain in children with Down syndrome have several promises as six possible candidate genes are located on chromosome 21. In conclusion, the pain assessment tools for intellectually disabled children are there. We should now focus on tailoring the pain treatment. To this aim we need to perform pharmacokinetic and pharmacodynamic studies of analgesics and obtain information about the genotype-phenotype relationships for pain. This can lead to the development of specific analgesic algorithms. (C) 2010 Wiley-Liss, Inc. Dev Disabil Res Rev 2010;16:248-257
    corecore