387 research outputs found

    Methane Post-Processing and Hydrogen Separation for Spacecraft Oxygen Loop Closure

    Get PDF
    State-of-the-art life support oxygen recovery technology on the International Space Station is based on the Sabatier reaction where only about half of the oxygen required for the crew is recovered from metabolic carbon dioxide (CO2). The Sabatier reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by both the limited availability of reactant hydrogen from water electrolysis and Sabatier methane (CH4) being vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover this hydrogen has the potential to substantially increase oxygen recovery and thus dramatically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. A purification system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of acetylene removal systems and PPA system architectures are presented and discussed

    Low-cost carbon fibre derived from sustainable coal tar pitch and polyacrylonitrile: Fabrication and characterisation

    Get PDF
    Preparation of high-value pitch-based carbon fibres (CFs) from mesophase pitch precursor is of great importance towards low-cost CFs. Herein, we developed a method to reduce the cost of CFs precursor through incorporating high loading of coal tar pitch (CTP) into polyacrylonitrile (PAN) polymer solution. The CTP with a loading of 25% and 50% was blended with PAN and their spinnability was examined by electrospinning process. The effect of CTP on thermal stabilization and carbonisation of PAN fibres was investigated by thermal analyses methods. Moreover, electrospun PAN/CTP fibres were carbonised at two different temperatures i.e., 850 Ā°C and 1200 Ā°C and their crystallographic structures of resulting such low-cost PAN/CTP CFs were studied through X-ray diffraction (XRD) and Raman analyses. Compared to pure PAN CFs, the electrical resistivity of PAN/25% CTP CFs significantly decreased by 92%, reaching 1.6 kĪ©/sq. The overall results showed that PAN precursor containing 25% CTP resulted in balanced properties in terms of spinnability, thermal and structural properties. It is believed that CTP has a great potential to be used as an additive for PAN precursor and will pave the way for cost-reduced and high-performance CFs

    Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    Get PDF
    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicle

    Sterol 14-alpha demethylase (CYP51) activity in Leishmania donovani is likely dependent upon cytochrome P450 reductase 1

    Get PDF
    Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of L. donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway

    Latent class analysis suggests four distinct classes of complementary medicine users among women with breast cancer

    Get PDF
    Background: Breast cancer patients commonly report using >1 form of complementary and alternative medicine (CAM). However, few studies have attempted to analyze predictors and outcomes of multiple CAM modalities. We sought to group breast cancer patients by clusters of type and intensity of complementary and alternative medicine (CAM) use following diagnosis. Methods: Detailed CAM use following breast cancer diagnosis was assessed in 2002ā€“2003 among 764 female residents of Long Island, New York diagnosed with breast cancer in 1996ā€“1997. Latent class analysis (LCA) was applied to CAM modalities while taking into account frequency and intensities. Results: Four distinct latent classes of CAM use emerged: 1) ā€œLow-dose supplement usersā€ (40 %), who used only common nutritional supplements; 2) ā€œVitamin/mineral supplement usersā€ (39 %), using an abundance of supplements in addition to other practices; 3) ā€œMind-body medicine usersā€ (12 %), with near-universal use of supplements, mind-body medicine techniques, and massage; and 4) ā€œMulti-modality high-dose usersā€ (9 %), who were highly likely to use nearly all types of CAM. Predictors of membership in classes with substantial CAM use included younger age, more education, higher income, Jewish religion, ideal body mass index, higher fruit and vegetable intake, higher levels of physical activity, receipt of adjuvant chemotherapy, and prior use of oral contraceptives. Conclusions: LCA identified important subgroups of breast cancer patients characterized by varying degrees of complementary therapy use. Further research should explore the reproducibility of these classes and investigate the association between latent class membership and breast cancer outcomes

    Sterol 14-alpha demethylase (CYP51) activity in Leishmania donovani is likely dependent upon cytochrome P450 reductase 1

    Get PDF
    Funding: This work was supported by the following Wellcome Trust (https://wellcome.org/) grants: 203134/Z/16/Z (SW and AHF) and 218448/Z/19/Z (SW). LBT, MT, VCL, GD and RW were supported through the grants awarded to SW. MPB was funded by an MRC (https://www.ukri.org/councils/ mrc/) Newton grant: MR/S0196501. SKW is part of the Glasgow University CMVLS research facility.Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.Ā Peer reviewe
    • ā€¦
    corecore