9,317 research outputs found

    Plant composition of three woodland communities of variable condition in the western Riverina, New South Wales, Australia

    Get PDF
    We examined differences in floristics among three regionally-threatened woodland communities in the western Riverina: Blackbox (Eucalyptus largiflorens), Bimble box-Pine (Eucalyptus populnea-Callitris glaucophylla) and Boree (Acacia pendula) between 2001 and 2004. Our aim was to examine possible relationships between the diversity and biomass of groundstorey vegetation, and remnant condition and rainfall both among communities and across years. The three woodland communities varied widely in their plant species composition, with only 22% of the 358 species common to all communities. Seven species, mainly exotic grasses and forbs, contributed 25% of the total cover across all sites and times. Blackbox communities had the greatest number of exotic and annual species. There were poor relationships between condition and diversity, richness, evenness or abundance of groundstorey plant species within 400 m2 quadrats. Overall, sites in better condition tended to support a greater cover of native plants and a lower cover of exotic plants (Blackbox only). There were only weak relationships between rainfall and biomass. The marked variation in species diversity in relation to changing seasonal conditions and within similar condition classes highlights the difficulties of developing benchmarks for separating the effects of management, and seasonal and longer-term climate change

    A very high frequency radio interferometer for investigating ionospheric disturbances using geostationary satellites. Determination of changes in exospheric electron content by a comparison of group delay and Faraday rotation

    Get PDF
    The theory and development of a VHF correlation radio interferometer for investigating ionospheric disturbances are discussed. The system was developed to receive signals from the geostationary Applications Technology Satellites. Amplitude and phase variations of the signal passing through the ionosphere can be detected by this instrument. The system consists of two superheterodyne receivers separated by a distance known as the baseline of the system. Since the system is a phase sensitive instrument, the local oscillators of the two receivers must be phase coherent. This is accomplished by using phase-locked loops for generating the local oscillators. The two signals from the separate receivers are cross-correlated by multiplying the two signals together and then time averaging the result. The sensitivity of the instrument is increased by off-setting one of the local oscillators by a small amount

    Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    Full text link
    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially-resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged wave forms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are self-similar for all these confinement modes. These results are strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.Comment: 17 pages, 10 figure

    Comparison between mirror Langmuir probe and gas puff imaging measurements of intermittent fluctuations in the Alcator C-Mod scrape-off layer

    Get PDF
    Statistical properties of the scrape-off layer (SOL) plasma fluctuations are studied in ohmically heated plasmas in the Alcator C-Mod tokamak. For the first time, plasma fluctuations as well as parameters that describe the fluctuations are compared across measurements from a mirror Langmuir probe (MLP) and from gas-puff imaging (GPI) that sample the same plasma discharge. This comparison is complemented by an analysis of line emission time-series data, synthesized from the MLP electron density and temperature measurements. The fluctuations observed by the MLP and GPI typically display relative fluctuation amplitudes of order unity together with positively skewed and flattened probability density functions. Such data time series are well described by an established stochastic framework which model the data as a superposition of uncorrelated, two-sided exponential pulses. The most important parameter of the process is the intermittency parameter, {\gamma} = {\tau}d / {\tau}w where {\tau}d denotes the duration time of a single pulse and {\tau}w gives the average waiting time between consecutive pulses. Here we show, using a new deconvolution method, that these parameters can be consistently estimated from different statistics of the data. We also show that the statistical properties of the data sampled by the MLP and GPI diagnostic are very similar. Finally, a comparison of the GPI signal to the synthetic line-emission time series suggests that the measured emission intensity can not be explained solely by a simplified model which neglects neutral particle dynamics

    Physics basis for the gasdynamic mirror (GDM) fusion rocket

    Full text link
    A detailed examination of the physics principles that underlie the operation of the GDM fusion confinement system is carried out in order to assess its transformation to a potential propulsion device. With an ion collision mean free path much shorter than its length, the plasma in GDM behaves like a fluid, and its escape from the chamber is analogous to the flow of a gas into vacuum from a vessel with a hole. A characteristic confinement time is shown to vary directly with the product of plasma mirror ratio and length, and inversely with the mean velocity of the plasma. Very efficient utilization of the confining magnetic field as reflected by a high beta (ratio of plasma pressure to magnetic field pressure) has been demonstrated analytically and experimentally. Presence of the plasma in the expansion region of the (mirror) magnetic nozzle leads to hydromagnetic stability for large mirror ratios that is further augmented by Finite Larmor Radius effects which are intrinsic to high aspect ratio devices. Confinement is also shown to be insensitive to “loss cone” microinstabilities and anisotropy-driven modes, while particles transport across the magnetic field is shown to be classical and negligible compared to axial transport under normal operating conditions. These and other considerations underscore the suitability of GDM as a propulsion device driven by fusion nuclear reactions. As such, it is further shown that it is capable of a propulsive performance that can lead to man’s exploration of the solar system and beyond in relatively short times. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87427/2/1338_1.pd

    Performance optimization of the Gasdynamic mirror propulsion system

    Full text link
    Nuclear fusion appears to be a most promising concept for producing extremely high specific impulse rocket engines. Engines such as these would effectively open up the solar system to human exploration and would virtually eliminate launch window restrictions. A preliminary vehicle sizing and mission study was performed based on the conceptual design of a Gasdynamic Mirror (GDM) fusion propulsion system. This study indicated that the potential specific impulse for this engine is approximately 142,000 sec. with about 22,100 N of thrust using a deuterium-tritium fuel cycle. The engine weight inclusive of the power conversion system was optimized around an allowable engine mass of 1500 Mg assuming advanced superconducting magnets and a Field Reversed Configuration (FRC) end plug at the mirrors. The vehicle habitat, lander, and structural weights are based on a NASA Mars mission study which assumes the use of nuclear thermal propulsion. Several manned missions to various planets were analyzed to determine fuel requirements and launch windows. For all fusion propulsion cases studied, the fuel weight remained a minor component of the total system weight regardless of when the missions commenced. In other words, the use of fusion propulsion virtually eliminates all mission window constraints and effectively allows unlimited manned exploration of the entire solar system. It also mitigates the need to have a large space infrastructure which would be required to support the transfer of massive amounts of fuel and supplies to lower a performing spacecraft. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87639/2/1420_1.pd

    A fusion-driven gas core nuclear rocket

    Full text link
    A magnetic confinement scheme is investigated as a potential propulsion device in which thrust is generated by a propellant heated by radiation emanating from a fusion plasma. The device in question is the gasdynamic mirror (GDM) machine in which a hot dense plasma is confined long enough to generate fusion energy while allowing a certain fraction of its charged particle population to go through one end to a direct converter. The energy of these particles is converted into electric power which is recirculated to sustain the steady state operation of the system. The injected power heats the plasma to thermonuclear temperatures where the resulting fusion energy appears a charged particle power, neutron power, and radiated power in the form of bremsstrahlung and synchrotron radiation. The neutron power can be converted through a thermal converter to electric power that can be combined with the direct converter power before being fed into the injector. The radiated power, on the other hand, can be used to heat a hydrogen propellant introduced into the system at a specified pressure and mass flow rate. This propellant can be pre-heated by regeneratively cooling the (mirror) nozzle or other components of the system if feasible, or by an electrothermal unit powered by portions of the recirculated power. Using a simple heat transfer model that ignores the heat flux to the wall, and assuming total absorption of radiation energy by the propellant it is shown that such a gas core rocket is capable of producing tens of kilonewtons of thrust and several thousands of seconds of specific impulse. It is also shown that the familiar Kelvin-Helmholtz instability which arises from the relative motion of the neutral hydrogen to the ionized fuel is not likely to occur in this system due to the presence of the confining magnetic field. © 1998 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87423/2/1377_1.pd
    • …
    corecore