212 research outputs found
Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817
The luminosity distance measurement of GW170817 derived from GW analysis in
Abbott et al. 2017 (here, A17:H0) is highly correlated with the measured
inclination of the NS-NS system. To improve the precision of the distance
measurement, we attempt to constrain the inclination by modeling the broad-band
X-ray-to-radio emission from GW170817, which is dominated by the interaction of
the jet with the environment. We update our previous analysis and we consider
the radio and X-ray data obtained at days since merger. We find that the
afterglow emission from GW170817 is consistent with an off-axis relativistic
jet with energy
propagating into an environment with density , with preference for wider jets (opening angle
deg). For these jets, our modeling indicates an off-axis angle deg. We combine our constraints on with the
joint distance-inclination constraint from LIGO. Using the same
km/sec peculiar velocity uncertainty assumed in A17:H0 but with an inclination
constraint from the afterglow data, we get a value of \mbox{km/s/Mpc}, which is higher than the value of
\mbox{km/s/Mpc} found in A17:H0. Further,
using a more realistic peculiar velocity uncertainty of 250 km/sec derived from
previous work, we find km/s/Mpc for H0 from
this system. We note that this is in modestly better agreement with the local
distance ladder than the Planck CMB, though a significant such discrimination
will require such events. Future measurements at days of the
X-ray and radio emission will lead to tighter constraints.Comment: Submitted to ApJL. Comments Welcome. Revised uncertainties in v
The multi-faceted Type II-L supernova 2014G from pre-maximum to nebular phase
We present multi-band ultraviolet, optical, and near-infrared photometry,
along with visual-wavelength spectroscopy, of supernova (SN) 2014G in the
nearby galaxy NGC 3448 (25 Mpc). The early-phase spectra show strong emission
lines of the high ionisation species He II/N IV/C IV during the first 2-3 d
after explosion, traces of a metal-rich CSM probably due to pre-explosion mass
loss events. These disappear by day 9 and the spectral evolution then continues
matching that of normal Type II SNe. The post-maximum light curve declines at a
rate typical of Type II-L class. The extensive photometric coverage tracks the
drop from the photospheric stage and constrains the radioactive tail, with a
steeper decline rate than that expected from the Co decay if
-rays are fully trapped by the ejecta. We report the appearance of an
unusual feature on the blue-side of H after 100 d, which evolves to
appear as a flat spectral feature linking H and the O I doublet. This
may be due to interaction of the ejecta with a strongly asymmetric, and
possibly bipolar CSM. Finally, we report two deep spectra at ~190 and 340 d
after explosion, the latter being arguably one of the latest spectra for a Type
II-L SN. By modelling the spectral region around the Ca II, we find a
supersolar Ni/Fe production. The strength of the O I 6300,6363
doublet, compared with synthetic nebular spectra, suggests a progenitor with a
zero-age main-sequence mass between 15 and 19 M.Comment: 24 pages, 14 figure
Optical and near infrared observations of SN 2014ck: an outlier among the Type Iax supernovae
We present a comprehensive set of optical and near-infrared photometric and
spectroscopic observations for SN 2014ck, extending from pre-maximum to six
months later. These data indicate that SN 2014ck is photometrically nearly
identical to SN 2002cx, which is the prototype of the class of peculiar
transients named SNe Iax. Similar to SN 2002cx, SN 2014ck reached a peak
brightness mag, with a post-maximum decline-rate mag. However, the spectroscopic sequence shows
similarities with SN 2008ha, which was three magnitudes fainter and faster
declining. In particular, SN 2014ck exhibits extremely low ejecta velocities,
km s at maximum, which are close to the value measured for
SN 2008ha and half the value inferred for SN 2002cx. The bolometric light curve
of SN 2014ck is consistent with the production of of Ni. The spectral identification of several iron-peak
features, in particular Co II lines in the NIR, provides a clear link to SNe
Ia. Also, the detection of narrow Si, S and C features in the pre-maximum
spectra suggests a thermonuclear explosion mechanism. The late-phase spectra
show a complex overlap of both permitted and forbidden Fe, Ca and Co lines. The
appearance of strong [Ca~II] 7292, 7324 again mirrors the
late-time spectra of SN 2008ha and SN 2002cx. The photometric resemblance to SN
2002cx and the spectral similarities to SN 2008ha highlight the peculiarity of
SN 2014ck, and the complexity and heterogeneity of the SNe Iax class.Comment: MNRAS Accepted 2016 March 22. Received 2016 March
SNhunt151: An explosive event inside a dense cocoon
Indexación: Scopus.We thank S. Spiro, R. Rekola, A. Harutyunyan, and M. L. Graham for their help with the observations. We are grateful to the collaboration of Massimo Conti, Giacomo Guerrini, Paolo Rosi, and Luz Marina Tinjaca Ramirez from the Osservatorio Astronomico Provinciale di Montarrenti. The staffs at the different observatories provided excellent assistance with the observations.The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 267251, ‘Astronomy Fellowships in Italy’ (AstroFIt)’. NE-R acknowledges financial support from MIUR PRIN 2010-2011, ‘The Dark Universe and the Cosmic Evolution of Baryons: From Current Surveys to Euclid’. NE-R, AP, SB, LT, MT, and GP are partially supported by the PRIN-INAF 2014 (project ‘Transient Universe: Unveiling New Types of Stellar Explosions with PESSTO’). GP acknowledges support provided by the Millennium Institute of Astrophysics (MAS) through grant IC120009 of the Programa Iniciativa Cientíifica Milenio del Ministerio de Economía, Fomento y Turismo de Chile. TK acknowledges financial support from the Emil Aaltonen Foundation. CRTS was supported by the NSF grants AST-0909182, AST-1313422, and AST-1413600. AVF is grateful for generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, the Miller Institute for Basic Research in Science (UC Berkeley), and NASA/HST grant GO-14668 from the Space Telescope Science Institute, which is operated by AURA, Inc. under NASA contract NAS5-26555. The work of AVF was conducted in part at the Aspen Center for Physics, which is supported by NSF grantPHY-1607611; he thanks the Center for its hospitality during the neutron stars workshop in June and July 2017. NE-R acknowledges the hospitality of the ‘Institut de Ciències de l'Espai (CSIC), where this work was completed.This research is based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias; the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma; the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundaci Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias; the Liverpool Telescope, operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias with financial support from the UK Science and Technology Facilities Council; the 1.82-m Copernico Telescope and the Schmidt 67/92 cm of INAF-Asiago Observatory; the Catalina Real Time Survey (CRTS) Catalina Sky Survey (CSS) 0.7-m Schmidt Telescope; and the Las Cumbres Observatory (LCO) network. This work is also based in part on archival data obtained with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555; the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (support was provided by NASA through an award issued by JPL/Caltech); and the Swift telescope.This work has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.SNhunt151 was initially classified as a supernova (SN) impostor (nonterminal outburst of a massive star). It exhibited a slow increase in luminosity, lasting about 450 d, followed by a major brightening that reaches M V ≈ -18 mag. No source is detected to M V ≳ -13 mag in archival images at the position of SNhunt151 before the slow rise. Low-to-mid-resolution optical spectra obtained during the pronounced brightening show very little evolution, being dominated at all times by multicomponent Balmer emission lines, a signature of interaction between the material ejected in the new outburst and the pre-existing circumstellar medium. We also analysed mid-infrared images from the Spitzer Space Telescope, detecting a source at the transient position in 2014 and 2015. Overall, SNhunt151 is spectroscopically a Type IIn SN, somewhat similar to SN 2009ip. However, there are also some differences, such as a slow pre-discovery rise, a relatively broad light-curve peak showing a longer rise time (~50 d), and a slower decline, along with a negligible change in the temperature around the peak (T ≤ 10 4 K). We suggest that SNhunt151 is the result of an outburst, or an SN explosion, within a dense circumstellar nebula, similar to those embedding some luminous blue variables like η Carinae and originating from past mass-loss events. © 2017 The Author(s).https://academic.oup.com/mnras/article/475/2/2614/479530
AT 2017be - a new member of the class of Intermediate-Luminosity Red Transients
We report the results of our spectrophotometric monitoring campaign for
AT~2017be in NGC~2537. Its lightcurve reveals a fast rise to an optical
maximum, followed by a plateau lasting about 30 days, and finally a fast
decline. Its absolute peak magnitude ( 12 ) is
fainter than that of core-collapse supernovae, and is consistent with those of
supernova impostors and other Intermediate-Luminosity Optical Transients. The
quasi-bolometric lightcurve peaks at 2 10 erg s,
and the late-time photometry allows us to constrain an ejected Ni mass
of 8 10\msun. The spectra of AT~2017be show minor
evolution over the observational period, a relatively blue continuum showing at
early phases, which becomes redder with time. A prominent H emission
line always dominates over other Balmer lines. Weak Fe {\sc ii} features,
Ca~{\sc ii} HK and the Ca {\sc ii} NIR triplet are also visible, while
P-Cygni absorption troughs are found in a high resolution spectrum. In
addition, the [Ca~{\sc ii}] 7291,7324 doublet is visible in all
spectra. This feature is typical of Intermediate-Luminosity Red Transients
(ILRTs), similar to SN~2008S. The relatively shallow archival Spitzer data are
not particularly constraining. On the other hand, a non-detection in deeper
near-infrared HST images disfavours a massive Luminous Blue Variable eruption
as the origin for AT~2017be. As has been suggested for other ILRTs, we propose
that AT~2017be is a candidate for a weak electron-capture supernova explosion
of a super-asymptotic giant branch star, still embedded in a thick dusty
envelope.Comment: 21 pages, 15 figures, accepted by MNRA
Massive stars exploding in a He-rich circumstellar medium - VIII. PSN J07285387+3349106, a highly reddened supernova Ibn
We present spectroscopic and photometric observations for the Type Ibn
supernova (SN) dubbed PSN J07285387+3349106. Using data provided by amateur
astronomers, we monitored the photometric rise of the SN to maximum light,
occurred on 2015 February 18.8 UT (JD(max,V) = 2457072.0 +- 0.8). PSN
J07285387+3349106 exploded in the inner region of an infrared luminous galaxy,
and is the most reddened SN Ibn discovered so far. We apply multiple methods to
derive the total reddening to the SN, and determine a total colour excess
E(B-V)(tot) = 0.99 +- 0.48 mag. Accounting for the reddening correction, which
is affected by a large uncertainty, we estimate a peak absolute magnitude of
M(V) = -20.30 +- 1.50. The spectra are dominated by continuum emission at early
phases, and He I lines with narrow P-Cygni profiles are detected. We also
identify weak Fe III and N II features. All these lines show an absorption
component which is blue-shifted by about 900-1000 km/s. The spectra also show
relatively broad He I line wings with low contrast, which extend to above 3000
km/s. From about 2 weeks past maximum, broad lines of O I, Mg II and the Ca II
near-infrared triplet are identified. The composition and the expansion
velocity of the circumstellar material, and the presence of He I and
alpha-elements in the SN ejecta indicate that PSN J07285387+3349106 was
produced by the core-collapse of a stripped-envelope star. We suggest that the
precursor was WNE-type Wolf-Rayet star in its dense, He-rich circumstellar
cocoon.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in MNRA
SN 2016coi (ASASSN-16fp): an energetic H-stripped core-collapse supernova from a massive stellar progenitor with large mass loss
We present comprehensive observations and analysis of the energetic
H-stripped SN 2016coi (a.k.a. ASASSN-16fp), spanning the -ray through
optical and radio wavelengths, acquired within the first hours to 420
days post explosion. Our campaign confirms the identification of He in the SN
ejecta, which we interpret to be caused by a larger mixing of Ni into the outer
ejecta layers. From the modeling of the broad bolometric light curve we derive
a large ejecta mass to kinetic energy ratio (, ). The small
[\ion{Ca}{ii}] \lam\lam7291,7324 to [\ion{O}{i}] \lam\lam6300,6364 ratio
(0.2) observed in our late-time optical spectra is suggestive of a large
progenitor core mass at the time of collapse. We find that SN 2016coi is a
luminous source of X-rays ( in the first
days post explosion) and radio emission ( at peak). These values are in line with those
of relativistic SNe (2009bb, 2012ap). However, for SN 2016coi we infer
substantial pre-explosion progenitor mass-loss with rate and a sub-relativistic shock
velocity , in stark contrast with relativistic SNe and similar
to normal SNe. Finally, we find no evidence for a SN-associated shock breakout
-ray pulse with energy . While we
cannot exclude the presence of a companion in a binary system, taken together,
our findings are consistent with a massive single star progenitor that
experienced large mass loss in the years leading up to core-collapse, but was
unable to achieve complete stripping of its outer layers before explosion.Comment: Submitted to ApJ. Main text: 21 pages; Appendix: 15 pages; 12 figure
SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events
We present one year of optical and near-infrared photometry and spectroscopy
of the Type IIP SNe 2013K and 2013am. Both objects are affected by significant
extinction, due to their location in dusty regions of their respective host
galaxies, ESO 009-10 and NGC 3623 (M65). From the photospheric to nebular
phases, these objects display spectra congruent with those of underluminous
Type IIP SNe (i.e. the archetypal SNe 1997D or 2005cs), showing low
photospheric velocities (~2 X 10**3 km/s at 50d) together with features arising
from Ba II which are particularly prominent in faint SNe IIP. The peak V-band
magnitudes of SN 2013K (-15.6 mag) and SN 2013am (-16.2 mag) are fainter than
standard-luminosity Type IIP SNe. The ejected Nickel masses are 0.012+-0.010
and 0.015+-0.006 Msol for SN 2013K and SN 2013am, respectively. The physical
properties of the progenitors at the time of explosion are derived through
hydrodynamical modelling. Fitting the bolometric curves, the expansion velocity
and the temperature evolution, we infer total ejected masses of 12 and 11.5
Msol, pre-SN radii of ~460 and ~360 Rsol, and explosion energies of 0.34 foe
and 0.40 foe for SN 2013K and SN 2013am. Late time spectra are used to estimate
the progenitor masses from the strength of nebular emission lines, which turn
out to be consistent with red supergiant progenitors of ~15 Msol. For both SNe,
a low-energy explosion of a moderate-mass red supergiant star is therefore the
favoured scenario.Comment: accepted for publication MNRA
- …