15 research outputs found
Uncertainty Analysis of Coaxial Thermocouple Calorimeters Used in Arc Jets
Recent introduction of Coaxial Thermocouple type calorimeters into the NASA Ames arc jet facilities has inspired an analysis of 2D conduction effects internal to this type of calorimeter. The 1D finite slab inverse analysis (which is typically used to deduce the heat transfer to the calorimeter) relies on the assumption that lateral conduction (i.e., 2D effects) is negligible. Most calorimeter bodies have a spherical nose, which in itself is a violation of the 1D finite slab analysis assumption. Secondly most calorimeters experience a variation in heating across the face of the body which is also a violation of the 1D finite slab analysis assumption. It turns out that these two effects tend to cancel each other to some extent. This paper shows the extent to which error exists in the analysis of the Coaxial Thermocouple type calorimeters, and also offers analysis strategies for reducing the errors
Closed Gap Slug Calorimeter for Plasma Stream Characterization
Slug calorimeters are used in sheer and stagnation mode to characterize heat flux levels for high enthalpy streams. The traditional design features a gap between slug and holder, which can be of concern in these convective heat flux environments. The challenge is to develop a calorimeter that closes the gap to gas flow, but largely maintains thermal insulation of the slug. The work presented herein introduces two new slug calorimeter designs featuring a closed gap. This is done using either aerogel as a filler or press fitting the slug with a disk. The designs were verified and compared to the baseline calorimeter design under radiative heat flux. Building on this, the calorimeters were exposed to convective heat flux in the arc-jet facilities. Results from the new designs and conclusions on the impact of the gap in convective heat flux will be shown
Bulk Enthalpy Calculations in the Arc Jet Facility at NASA ARC
The Arc Jet Facilities at NASA Ames Research Center generate test streams with enthalpies ranging from 5 MJ/kg to 25 MJ/kg. The present work describes a rigorous method, based on equilibrium thermodynamics, for calculating the bulk enthalpy of the flow produced in two of these facilities. The motivation for this work is to determine a dimensionally-correct formula for calculating the bulk enthalpy that is at least as accurate as the conventional formulas that are currently used. Unlike previous methods, the new method accounts for the amount of argon that is present in the flow. Comparisons are made with bulk enthalpies computed from an energy balance method. An analysis of primary facility operating parameters and their associated uncertainties is presented in order to further validate the enthalpy calculations reported herein
Uncertainty Analysis of Coaxial Thermocouple Calorimeters Used in Arc Jets
Recent introduction of Coaxial Thermocouple type calorimeters into the NASA Ames arc jet facilities has inspired an analysis of 2D conduction effects internal to this type of calorimeter. The 1D finite slab inverse analysis (which is typically used to deduce the heat transfer to the calorimeter) relies on the assumption that lateral conduction (i.e., 2D effects) is negligible. Most calorimeter bodies have a spherical nose, which in itself is a violation of the 1D finite slab analysis assumption. Secondly most calorimeters experience a variation in heating across the face of the body which is also a violation of the 1D finite slab analysis assumption. It turns out that these two effects tend to cancel each other to some extent. This paper shows the extent to which error exists in the analysis of the Coaxial Thermocouple type calorimeters, and also offers analysis strategies for reducing the errors
Emission Spectroscopic Measurements in the Plenum Region of the NASA IHF Arc Jet Facility
A newly designed segment with optical access was installed in the plenum chamber of the 60 MW Interaction Heating arcjet Facility at NASA Ames Research Center. This special segment has ports located off axis, and the optical fibers can be inserted into these ports. The special segment allows for optical examination of the arc-heated flow as it enters the plenum, and thus assists in determining estimates of the thermodynamic state of the inflow to the convergent section of the nozzle. In the present work, optical emission measurements have been made in VIS-NIR region (wavelengths between 500 nm to 900 nm) for two settings of the arc heater - a 6000 A condition (high condition) with the minimum amount of radial injection of cold air in the plenum, and a 3300 A condition (low condition) with significant amount of cold air injection to reduce the enthalpy of the arc-heated stream. The results presented here were obtained using an Acton SP300i spectrometer coupled to a Princeton Instruments PI-max intensified camera. In addition to the optical emission measurements, computations were performed for the flow in the plenum and radiation along lines of sight corresponding to the optical ports. Along the centerline, i.e., the longest line of sight across the plenum cross-section, there is good agreement between computations and measurements for the high enthalpy condition, although the off-axis radial profiles show some differences. For the low enthalpy condition, there are significant differences between computations and measurements. The current working hypothesis is that the computational model does not capture details of the mixing process in the plenum
Design and Characterization of a New Nozzle in a NASA Arc-Jet
The design of a new 76 mm (3 inch) nozzle of the Interaction Heating Facility arc jet at NASA Ames Research Center is described. The computational efforts which were an integral part of the preliminary design and characterization of the nozzle are described as well. Details of heat flux measurements made in this new nozzle are provided. Apart from showing the flow characteristics of the nozzle, predictions of stagnation point heat flux are compared against measurements made with a nullpoint calorimeter; the agreement between computation and measurement is found to be good. Unfortunately, pressure measurements could not be made in the first round. The predicted stagnation point pressures and heat fluxes, with appropriate scaling for a 25 mm (1 inch) diameter iso-q geometry (reference geometry), are used to establish a provisional operating envelope for the new nozzle. The envelope is shown to enclose relevant heating portions of representative atmospheric trajectories at Venus and Saturn
Emission Spectroscopic Measurements with an Optical Probe in the NASA Ames IHF Arc Jet Facility
An optical probe was designed to measure radiation (from inside the arc heater) incident on a test sample immersed in the arc-heated stream. Currently, only crude estimates are available for this incident radiation. Unlike efforts of the past, where the probe line of sight was inclined to the nozzle centerline, the present development focuses on having the probe line of sight coincide with the nozzle centerline. A fiber-coupled spectrometer was used to measure the spectral distribution of incident radiation in the wavelength range of 225 to 900 nm. The radiation heat flux in this wavelength range was determined by integration of measured emission spectral intensity calibrated to incident irradiance from an integrating sphere. Two arc-heater conditions, corresponding to stream bulk enthalpy levels of 12 and 22 MJ/kg, were investigated in the 13-inch diameter nozzle of the Interaction Heating Facility at NASA Ames Research Center. With the probe placed at a distance of 10 inches from the nozzle exit plane, total radiative heat fluxes were measured to be 3.3 and 8.4 W/sq cm for the 12 and 22 MJ/kg conditions, respectively. About 17% of these radiative fluxes were due to bound-bound radiation from atoms and molecules, while the remaining 83% could be attributed to continua (bound-free and/or free-free). A comparison with spectral simulation based on CFD solutions for the arc-heater flow field and with spectroscopic measurements in the plenum region indicates that more than 95% of the measured radiation is generated in the arc region. The total radiative heat flux from the line radiation could increase by a factor of two through contributions from wavelengths outside the measured range, i.e., from the vacuum ultraviolet (wavelengths less than 225 nm) and the infrared (wavelengths greater than 900 nm). An extrapolation of the continuum radiation to these two wavelength regions was not attempted. In the tested configuration, the measured radiative heat flux accounts for only about 1.4% of the nominal heat flux on a flat face model and therefore is considered negligible. In the 6-inch diameter nozzle, on account of shorter path lengths, the radiation heat flux could be significant. Therefore, future tests in the 6-inch nozzle will have radiometers in addition to the optical probe
Evidence of Standing Waves in Arc Jet Nozzle Flow
Waves spawned by the nozzle in the NASA Ames 60 MW Interaction Heating Facility arc jet were experimentally observed in pressure surveys at the exit of the nozzle. The waves have been seen in past CFD simulations, but were away from the region where models were tested (for the existing nozzles). However, a recent test series with a new nozzle extension (229 mm exit diameter) revealed that these waves intersect the centerline of the jet in a region where it is desirable to put test articles, and that the waves may be contributing to non-uniform recession behavior seen in Teflon (trademark) sublimation test articles tested in this new nozzle. It is reasonable to assume the ablation recession of thermal protection models will also be nonuniform due to exposure to these waves. This work shows that ablation response is sensitive to the location of test samples in the free jet relative to the location of the wave interaction, and that the issues with these waves can be avoided by choosing an optimum position for a test article in the free jet. This work describes the experimental observations along with the CFD simulations that have identified the waves emanating from the nozzle, as well as the instrumentation used to detect them. The work describes a recommended solution, derived by CFD analysis, which if implemented, should significantly reduce these flow disturbance and pressure anomalies in future nozzles
Arcjet exploratory tests of ARC optical window design for the AFE vehicle
Tests were made in the 20 MW arc jet facility at the NASA ARC to determine the suitability of sapphire and fused silica as window materials for the Aeroassist Flight Experiment (AFE) entry vehicle. Twenty nine tests were made; 25 at a heating rate about 80 percent of that expected during the AFE entry and 4 at approximately the full, 100 percent AFE heating rate profile, that produces a temperature of about 2900 F on the surface of the tiles that protect the vehicle. These tests show that a conductively cooled window design using mechanical thermal contacts and sapphire is probably not practical. Cooling the window using mechanical thermal contacts produces thermal stresses in the sapphire that cause the window to crack. An insulated design using sapphire, that cools the window as little as possible, appears promising although some spectral data in the vacuum-ultra-violet (VUV) will be lost due to the high temperature reached by the sapphire. The surface of the insulated sapphire windows, tested at the 100 percent AFE heating rate, showed some slight ablation, and cracks appeared in two of three test windows. One small group of cracks were obviously caused by mechanical binding of the window in the assembly, which can be eliminated with improved design. Other cracks were long, straight, thin crystallographic cracks that have very little effect on the optical transmission of the window. Also, the windows did not fall apart along these crystallographic cracks when the windows were removed from their assemblies. Theoretical results from the thermal analysis computer program SINDA indicate that increasing the window thickness from 4 to 8 mm may enable surface ablation to be avoided. An insulated design using a fused silica window tested at the nominal AFE heating rate experienced severe ablation, thus fused silica is not considered to be an acceptable window material