20 research outputs found

    Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice

    Get PDF
    Abstract Introduction Acute kidney injury following surgery incurs significant mortality with no proven preventative therapy. We investigated whether the α2 adrenoceptor agonist dexmedetomidine (Dex) provides protection against ischemia-reperfusion induced kidney injury in vitro and in vivo. Methods In vitro, a stabilised cell line of human kidney proximal tubular cells (HK2) was exposed to culture medium deprived of oxygen and glucose. Dex decreased HK2 cell death in a dose-dependent manner, an effect attenuated by the α2 adrenoceptor antagonist atipamezole, and likely transduced by phosphatidylinositol 3-kinase (PI3K-Akt) signaling. In vivo C57BL/6J mice received Dex (25 μg/kg, intraperitoneal (i.p.)) 30 minutes before or after either bilateral renal pedicle clamping for 25 minutes or right renal pedicle clamping for 40 minutes and left nephrectomy. Results Pre- or post-treatment with Dex provided cytoprotection, improved tubular architecture and function following renal ischemia. Consistent with this cytoprotection, dexmedetomidine reduced plasma high-mobility group protein B1 (HMGB-1) elevation when given prior to or after kidney ischemia-reperfusion; pretreatment also decreased toll-like receptor 4 (TLR4) expression in tubular cells. Dex treatment provided long-term functional renoprotection, and even increased survival following nephrectomy. Conclusions Our data suggest that Dex likely activates cell survival signal pAKT via α2 adrenoceptors to reduce cell death and HMGB1 release and subsequently inhibits TLR4 signaling to provide reno-protection

    Xenon and Sevoflurane Provide Analgesia during Labor and Fetal Brain Protection in a Perinatal Rat Model of Hypoxia-Ischemia

    Get PDF
    It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE). Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon), in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35%) or xenon (35%) were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND) 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic) neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be tested in clinical trials in the future

    Neuro-Immune Interactions in Inflammation and Autoimmunity

    No full text
    The nervous system plays an important role in the regulation of immunity and inflammation. On the other hand unbalanced immune responses in inflammatory and autoimmune conditions may have a deleterious impact on neuronal integrity and brain function. Recent studies have characterized neural pathways communicating peripheral inflammatory signals to the CNS, and brain- and spinal cord-derived circuitries controlling various innate and adaptive immune responses and inflammation. A prototypical neural reflex circuit that regulates immunity and inflammation is the vagus nerve-based “inflammatory reflex”. Ongoing research has revealed cellular and molecular mechanisms underlying these neural circuits and indicated new therapeutic approaches in inflammatory and autoimmune disorders. Pharmacological and bioelectronic modulation of neural circuitry has been successfully explored in preclinical settings of sepsis, arthritis, inflammatory bowel disease, obesity-driven disorders, diabetes and other diseases. These studies paved the way to successful clinical trials with bioelectronic neuronal modulation in rheumatoid arthritis and inflammatory bowel disease. Dysregulated release of cytokines and other inflammatory molecules may have a severe impact on brain function. Brain inflammation (neuroinflammation), imbalances in brain neuronal integrity and neurotransmitter systems, and cognitive impairment are characteristic features of post-operative conditions, sepsis, liver diseases, diabetes and other disorders characterized by immune and metabolic dysregulation. Derangements in cytokine release also play a pivotal role in depression. Characteristic brain reactive antibodies in autoimmune conditions, including systemic lupus erythematosus and neuromyelitis optica, significantly contribute to brain pathology and cognitive impairment. These studies, and the simultaneous characterization of neuro-protective cytokines, identified new therapeutic approaches for treating neurological complications in inflammatory and autoimmune disorders. This Frontiers Research Topic is a forum for publishing research findings and methodological and conceptual advances at the intersection of immunology and neuroscience. We hope that presenting new insight into bi-directional neuro-immune communication in inflammation and autoimmunity will foster further collaborations and facilitate the development of new efficient therapeutic strategies

    A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies:important issues and lessons relevant to the design of future clinical research

    No full text
    Preclinical evidence suggests that anesthetic agents harm the developing brain thereby causing long-term neurocognitive impairments. It is not clear if these findings apply to humans, and retrospective epidemiological studies thus far have failed to show definitive evidence that anesthetic agents are harmful to the developing human brain. AIM: The aim of this systematic review was to summarize the preclinical studies published over the past decade, with a focus on methodological issues, to facilitate the comparison between different preclinical studies and inform better design of future trials. METHOD: The literature search identified 941 articles related to the topic of neurotoxicity. As the primary aim of this systematic review was to compare methodologies applied in animal studies to inform future trials, we excluded a priori all articles focused on putative mechanism of neurotoxicity and the neuroprotective agents. Forty-seven preclinical studies were finally included in this review. RESULTS: Methods used in these studies were highly heterogeneous-animals were exposed to anesthetic agents at different developmental stages, in various doses and in various combinations with other drugs, and overall showed diverse toxicity profiles. Physiological monitoring and maintenance of physiological homeostasis was variable and the use of cognitive tests was generally limited to assessment of specific brain areas, with restricted translational relevance to humans. CONCLUSION: Comparison between studies is thus complicated by this heterogeneous methodology and the relevance of the combined body of literature to humans remains uncertain. Future preclinical studies should use better standardized methodologies to facilitate transferability of findings from preclinical into clinical science

    Systemic HMGB1 neutralization prevents postoperative neurocognitive dysfunction in aged rats

    Get PDF
    Postoperative neurocognitive disorders are common complications in elderly patients following surgery or critical illness. High mobility group box 1 protein (HMGB1) is rapidly released after tissue trauma and critically involved in response to sterile injury. Herein we assessed the role of HMGB1 after liver surgery in aged rats and explored the therapeutic potential of a neutralizing anti-HMGB1 monoclonal antibody in a clinically relevant model of postoperative neurocognitive disorders. 19-22 months Sprague Dawley rats were randomly assigned as: (1) control with saline; (2) surgery, a partial hepatolobectomy under sevoflurane anesthesia and analgesia, + immunoglobulin G as control antibody; (3) surgery + anti-HMGB1. A separate cohort of animals was used to detect His-tagged HMGB1 in the brain. Systemic anti-HMGB1 antibody treatment exerted neuroprotective effects preventing postoperative memory deficits and anxiety in aged rats by preventing surgery-induced reduction of phosphorylated cyclic AMP response element-binding protein in the hippocampus. Although no evident changes in the intracellular distribution of HMGB1 in hippocampal cells were noted after surgery, HMGB1 levels were elevated on day 3 in rat plasma samples. Experiments with tagged HMGB1 further revealed a critical role of systemic HMGB1 to enable an access to the brain and causing microglial activation. Overall, these data demonstrate a pivotal role for systemic HMGB1 in mediating postoperative neuroinflammation. This may have direct implications for common postoperative complications like delirium and postoperative cognitive dysfunction

    Dysfunction of inflammation-resolving pathways is associated with exaggerated postoperative cognitive decline in a rat model of the metabolic syndrome.

    Get PDF
    The cholinergic antiinflammatory pathway (CAP), which terminates in the spleen, attenuates postoperative cognitive decline (PCD) in rodents. Surgical patients with metabolic syndrome exhibit exaggerated and persistent PCD that is reproduced in postoperative rats selectively bred for easy fatigability and that contain all features of metabolic syndrome (low-capacity runners [LCRs]). We compared the CAP and lipoxin A(4) (LXA(4)), another inflammation-resolving pathway in LCR, with its counterpart high-capacity runner (HCR) rats. Isoflurane-anesthetized LCR and HCR rats either underwent aseptic trauma involving tibial fracture (surgery) or not (sham). At postoperative d 3 (POD3), compared with HCR, LCR rats exhibited significantly exaggerated PCD (trace fear conditioning freezing time 43% versus 57%). Separate cohorts were killed at POD3 to collect plasma for LXA4 and to isolate splenic mononuclear cells (MNCs) to analyze CAP signaling, regulatory T cells (Tregs) and M2 macrophages (M2 Mφ). Under lipopolysaccharide (LPS) stimulation, tumor necrosis factor (TNF)-α produced by splenic MNCs was 117% higher in LCR sham and 52% higher in LCR surgery compared with HCR sham and surgery rats; LPS-stimulated TNF-α production could not be inhibited by an α7 nicotinic acetylcholine receptor agonist, whereas inhibition by the β(2) adrenergic agonist, salmeterol, was significantly less (-35%) than that obtained in HCR rats. Compared to HCR, sham and surgery LCR rats had reduced β(2) adrenergic receptor-expressing T lymphocytes (59%, 44%), Tregs (47%, 54%) and M2 Mφ (45%, 39%); surgical LCR rats' hippocampal M2 Mφ was 66% reduced, and plasma LXA4 was decreased by 120%. Rats with the metabolic syndrome have ineffective inflammation-resolving mechanisms that represent plausible reasons for the exaggerated and persistent PCD
    corecore