1,019 research outputs found

    Effectiveness and Safety of Rituximab in Recalcitrant Pemphigoid Diseases

    Get PDF
    Introduction: Rituximab (RTX) is a monoclonal antibody targeting CD20, a transmembrane protein expressed on B cells, causing B cell depletion. RTX has shown great efficacy in studies of pemphigus vulgaris, but data of pemphigoid diseases are limited. Objective: To assess the effectiveness and safety of RTX in pemphigoid diseases. Methods: The medical records of 28 patients with pemphigoid diseases that were treated with RTX were reviewed retrospectively. Early and late endpoints, defined according to international consensus, were disease control (DC), partial remission (PR), complete remission (CR), and relapses. Safety was measured by reported adverse events. Results: Patients with bullous pemphigoid (n = 8), mucous membrane pemphigoid (n = 14), epidermolysis bullosa acquisita (n = 5), and linear IgA disease (n = 1) were included. Treatment with 500 mg RTX (n = 6) or 1,000 mg RTX (n = 22) was administered on days 1 and 15. Eight patients received additional 500 mg RTX at months 6 and 12. Overall, DC was achieved in 67.9%, PR in 57.1%, and CR in 21.4% of the cases. During follow-up, 66.7% patients relapsed. Repeated treatment with RTX led to remission (PR or CR) in 85.7% of the retreated cases. No significant difference in response between pemphigoid subtypes was found. IgA-dominant cases (n = 5) achieved less DC (20 vs. 81.3%; p = 0.007), less PR (20 vs. 62.5%; p = 0.149), and less CR (0 vs. 18.8%; p = 0.549) compared to IgG-dominant cases (n = 16). Five severe adverse events and three deaths were reported. One death was possibly related to RTX and one death was disease related. Conclusion: RTX can be effective in recalcitrant IgG-dominant pemphigoid diseases, however not in those where IgA is dominant

    Geometrically induced singular behavior of entanglement

    Get PDF
    We show that the geometry of the set of quantum states plays a crucial role in the behavior of entanglement in different physical systems. More specifically it is shown that singular points at the border of the set of unentangled states appear as singularities in the dynamics of entanglement of smoothly varying quantum states. We illustrate this result by implementing a photonic parametric down conversion experiment. Moreover, this effect is connected to recently discovered singularities in condensed matter models.Comment: v2: 4 pags, 4 figs. A discussion before the proof of Proposition 1 and tomographic results were included, Propostion 2 was removed and the references were fixe

    Measurement noise floor for a long-distance optical carrier transmission via fiber

    Full text link
    We investigated the measurement floor and link stability for the transfer of an ultra-stable optical frequency via an optical fiber link. We achieved a near-delay-limited instability of 3x10^(-15)/(tau x Hz) for 147 km deployed fiber, and 10^(-20) (integrations time tau = 4000 s) for the noise floor.Comment: 5 pages, 3 figures, 7th Symposium on Frequency Standards and Metrology (Pacific Grove,USA, Oct 2008

    Optimal transfers from Moon to L2L_2 halo orbit of the Earth-Moon system

    Full text link
    In this paper, we seek optimal solutions for a transfer from a parking orbit around the Moon to a halo orbit around L2L_2 of the Earth-Moon system, by applying a single maneuver and exploiting the stable invariant manifold of the hyperbolic parking solution at arrival. For that, we propose an optimization problem considering as variables both the orbital characteristics of a parking solution around the Moon, (namely, its Keplerian elements) and the characteristics of a transfer trajectory guided by the stable manifold of the arrival Halo orbit. The problem is solved by a nonlinear programming method (NLP), aiming to minimize the cost of ΔV\Delta V to perform a single maneuver transfer, within the framework of the Earth-Moon system of the circular restricted three-body problem. Results with low ΔV\Delta V and suitable time of flight show the feasibility of this kind of transfer for a Cubesat

    Numerical investigations of the orbital dynamics around a synchronous binary system of asteroids

    Full text link
    In this article, equilibrium points and families of periodic orbits in the vicinity of the collinear equilibrium points of a binary asteroid system are investigated with respect to the angular velocity of the secondary body, the mass ratio of the system and the size of the secondary. We assume that the gravitational fields of the bodies are modeled assuming the primary as a mass point and the secondary as a rotating mass dipole. This model allows to compute families of planar and halo periodic orbits that emanate from the equilibrium points L1 L_1 and L2L_2. The stability and bifurcations of these families are analyzed and the results are compared with the results obtained with the Restricted Three-Body Problem (RTBP). The results provide an overview of the dynamical behavior in the vicinity of a binary asteroid system

    Orbital Magnetism in Ensembles of Parabolic Potentials

    Full text link
    We study the magnetic susceptibility of an ensemble of non-interacting electrons confined by parabolic potentials and subjected to a perpendicular magnetic field at finite temperatures. We show that the behavior of the average susceptibility is qualitatively different from that of billiards. When averaged over the Fermi energy the susceptibility exhibits a large paramagnetic response only at certain special field values, corresponding to comensurate classical frequencies, being negligible elsewhere. We derive approximate analytical formulae for the susceptibility and compare the results with numerical calculations.Comment: 4 pages, 4 figures, REVTE

    Analysis of the dynamics of a spacecraft in the vicinity of an asteroid binary system with equal masses

    Full text link
    In this work, we performed a dynamical analysis of a spacecraft around a nearly equal-mass binary near-Earth asteroid with application to the asteroid 2017 YE5, which is also a possible dormant Jupiter-family comet. Thus, we investigated the motion of a particle around this binary system using the circular restricted three-body problem. We calculated the locations of the Lagrangian points of the system and their Jacobi constant. Through numerical simulations, using the Poincar\'e Surface of Sections, it was possible to find several prograde and retrograde periodic orbits around each binary system's primary, some exhibiting significantly-sized higher-order behavior. We also calculated the stability of these orbits. After finding the periodic orbits, we investigated the influence of solar radiation pressure on these orbits. For this analysis, we considered that the area-to-mass ratio equals 0.01 and 0.1. We also performed a spacecraft lifetime analysis considering the physical and orbital characteristics of the 2017YE5 system and investigated the behavior of a spacecraft in the vicinity of this system. We analyzed direct and retrograde orbits for different values of Jacobi's constant. This study investigated orbits that survive for at least six months, not colliding or escaping the system during that time. We also analyze the initial conditions that cause the spacecraft to collide with M1M_1 or M2M_2, or escape from the system. In this work, we take into account the gravitational forces of the binary asteroid system and the solar radiation pressure (SRP). Finally, we calculated optimal bi-impulsive orbital maneuvers between the collinear Lagrangian points. We found a family of possible orbital transfers considering times of flight between 0.1 and 1 day
    corecore