562 research outputs found
Recommended from our members
Spring 1970
Response of Coastal Bermudagrass to Nitrogen by D.A. Mays and G. L. Terman (page 3) Soil & Water Resources by Fred P. Miller (7) Organization Against Oil by R. B. Clark (9) 1970 Turf Conference Program (12) Principles for Any Green by Wayne Morgan (16) An Effective Technique for Recognition by Howard Gaskill (18) Ten Years of Decisions by James W. Brandt (21
Lysosomes in iron metabolism, ageing and apoptosis
The lysosomal compartment is essential for a variety of cellular functions, including the normal turnover of most long-lived proteins and all organelles. The compartment consists of numerous acidic vesicles (pH ∼4 to 5) that constantly fuse and divide. It receives a large number of hydrolases (∼50) from the trans-Golgi network, and substrates from both the cells’ outside (heterophagy) and inside (autophagy). Many macromolecules contain iron that gives rise to an iron-rich environment in lysosomes that recently have degraded such macromolecules. Iron-rich lysosomes are sensitive to oxidative stress, while ‘resting’ lysosomes, which have not recently participated in autophagic events, are not. The magnitude of oxidative stress determines the degree of lysosomal destabilization and, consequently, whether arrested growth, reparative autophagy, apoptosis, or necrosis will follow. Heterophagy is the first step in the process by which immunocompetent cells modify antigens and produce antibodies, while exocytosis of lysosomal enzymes may promote tumor invasion, angiogenesis, and metastasis. Apart from being an essential turnover process, autophagy is also a mechanism by which cells will be able to sustain temporary starvation and rid themselves of intracellular organisms that have invaded, although some pathogens have evolved mechanisms to prevent their destruction. Mutated lysosomal enzymes are the underlying cause of a number of lysosomal storage diseases involving the accumulation of materials that would be the substrate for the corresponding hydrolases, were they not defective. The normal, low-level diffusion of hydrogen peroxide into iron-rich lysosomes causes the slow formation of lipofuscin in long-lived postmitotic cells, where it occupies a substantial part of the lysosomal compartment at the end of the life span. This seems to result in the diversion of newly produced lysosomal enzymes away from autophagosomes, leading to the accumulation of malfunctioning mitochondria and proteins with consequent cellular dysfunction. If autophagy were a perfect turnover process, postmitotic ageing and several age-related neurodegenerative diseases would, perhaps, not take place
Cognitive and behavioral predictors of light therapy use
Objective: Although light therapy is effective in the treatment of seasonal affective disorder (SAD) and other mood disorders, only 53-79% of individuals with SAD meet remission criteria after light therapy. Perhaps more importantly, only 12-41% of individuals with SAD continue to use the treatment even after a previous winter of successful treatment. Method: Participants completed surveys regarding (1) social, cognitive, and behavioral variables used to evaluate treatment adherence for other health-related issues, expectations and credibility of light therapy, (2) a depression symptoms scale, and (3) self-reported light therapy use. Results: Individuals age 18 or older responded (n = 40), all reporting having been diagnosed with a mood disorder for which light therapy is indicated. Social support and self-efficacy scores were predictive of light therapy use (p's<.05). Conclusion: The findings suggest that testing social support and self-efficacy in a diagnosed patient population may identify factors related to the decision to use light therapy. Treatments that impact social support and self-efficacy may improve treatment response to light therapy in SAD. © 2012 Roecklein et al
Bright light treatment of depression for older adults [ISRCTN55452501]
BACKGROUND: The incidence of insomnia and depression in the elder population is significant. It is hoped that use of light treatment for this group could provide safe, economic, and effective rapid recovery. METHODS: In this home-based trial we treated depressed elderly subjects with bright white (8,500 Lux) and dim red (<10 Lux) light for one hour a day at three different times (morning, mid-wake and evening). A placebo response washout was used for the first week. Wake treatment was conducted prior to the initiation of treatment, to explore antidepressant response and the interaction with light treatment. Urine and saliva samples were collected during a 24-hour period both before and after treatment and assayed for aMT6s and melatonin respectively to observe any change in circadian timing. Subjects wore a wrist monitor to record light exposure and wrist activity. Daily log sheets and weekly mood (GDS) and physical symptom (SAFTEE) scales were administered. Each subject was given a SCID interview and each completed a mood questionnaire (SIGH-SAD-SR) before and after treatment. Also, Hamilton Depression Rating (SIGH-SAD version) interviews were conducted by a researcher who was blind to the treatment condition. A control group of healthy, age-matched, volunteers was studied for one day to obtain baseline data for comparison of actigraphy and hormone levels. RESULTS: Eighty-one volunteers, between 60 and 79 years old, completed the study. Both treatment and placebo groups experienced mood improvement. Average GDS scores improved 5 points, the Hamilton Depression Rating Scale (HDRS) 17 scores (extracted from the self-rated SIGH-SAD-SR) improved 6 points. There were no significant treatment effects or time-by-treatment interactions. No significant adverse reactions were observed in either treatment group. The assays of urine and saliva showed no significant differences between the treatment and placebo groups. The healthy control group was active earlier and slept earlier but received less light than the depressed group at baseline. CONCLUSION: Antidepressant response to bright light treatment in this age group was not statistically superior to placebo. Both treatment and placebo groups experienced a clinically significant overall improvement of 16%
Shaping bursting by electrical coupling and noise
Gap-junctional coupling is an important way of communication between neurons
and other excitable cells. Strong electrical coupling synchronizes activity
across cell ensembles. Surprisingly, in the presence of noise synchronous
oscillations generated by an electrically coupled network may differ
qualitatively from the oscillations produced by uncoupled individual cells
forming the network. A prominent example of such behavior is the synchronized
bursting in islets of Langerhans formed by pancreatic \beta-cells, which in
isolation are known to exhibit irregular spiking. At the heart of this
intriguing phenomenon lies denoising, a remarkable ability of electrical
coupling to diminish the effects of noise acting on individual cells.
In this paper, we derive quantitative estimates characterizing denoising in
electrically coupled networks of conductance-based models of square wave
bursting cells. Our analysis reveals the interplay of the intrinsic properties
of the individual cells and network topology and their respective contributions
to this important effect. In particular, we show that networks on graphs with
large algebraic connectivity or small total effective resistance are better
equipped for implementing denoising. As a by-product of the analysis of
denoising, we analytically estimate the rate with which trajectories converge
to the synchronization subspace and the stability of the latter to random
perturbations. These estimates reveal the role of the network topology in
synchronization. The analysis is complemented by numerical simulations of
electrically coupled conductance-based networks. Taken together, these results
explain the mechanisms underlying synchronization and denoising in an important
class of biological models
Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios
We study the formation of low-mass X-ray binaries (LMXBs) through helium star
supernovae in binary systems that have each emerged from a common-envelope
phase. LMXB progenitors must satisfy a large number of evolutionary and
structural constraints, which imposed under the assumption of a symmetric
supernova explosion, prohibit the formation of short-period LMXBs transferring
mass at sub-Eddington rates through any channel in which the intermediate
progenitor of the neutron star is not completely degenerate. Barring
accretion-induced collapse, the existence of such systems therefore requires
that natal kicks be imparted to neutron stars. We use an analytical method to
synthesize the distribution of nascent LMXBs over donor masses and orbital
periods, and evaluate their birth rate and systemic velocity dispersion. Within
the limitations imposed by observational incompleteness and selection effects,
and our neglect of secular evolution in the LMXB state, we compare our results
with observations. However, our principal objective is to evaluate how basic
model parameters influence these results. We conclude that the characteristics
of newborn LMXBs are primarily determined by age and stability constraints and
the efficiency of magnetic braking, and are largely independent of the
primordial binary population and the evolutionary history of LMXB progenitors
(except for extreme values of the average kick magnitude or of the
common-envelope ejection efficiency). Theoretical estimates of total LMXB birth
rates are not credible, since they strongly depend on the observationally
indeterminate frequency of primordial binaries with extreme mass ratios in
long-period orbits.Comment: 31 pages, AASTeX, 14 Figures, 2 Tables, to be published in Ap
- …