7 research outputs found

    Synthesis and Determination of Physicochemical Properties of New 3-(4-Arylpiperazin-1-yl)-2-hydroxypropyl 4-Alkoxyethoxybenzoates

    No full text
    Nine new dihydrochloride salts of 3-(4-arylpiperazin-1-yl)-2-hydroxypropyl 4-alkoxyethoxybenzoates were designed and synthesized. The physicochemical properties such as lipophilicity index (log kw) and dissociation constant (pKa) were experimentally determined and compared to the software calculated data. The lipophilicity index was determined by means of reversed-phase high performance liquid chromatography (RP-HPLC). The pKa values were determined by means of capillary zone electrophoresis. The “drug-likeness” properties according to the Lipinski Rule of Five and prediction of possible blood–brain barrier penetration were computed and discussed

    Synthesis and Characterization of New 3-(4-Arylpiperazin-1-yl)-2-hydroxypropyl 4-Propoxybenzoates and Their Hydrochloride Salts

    No full text
    Five new 3-(4-arylpiperazin-1-yl)-2-hydroxypropyl 4-propoxybenzoates were designed and synthesized as potential dual antihypertensive agents. The compounds were prepared as free bases and subsequently transformed to hydrochloride salts. The position of protonation of nitrogen atoms in the piperazine ring of hydrochloride salts was determined by means of 13C-CP/MAS and 15N-CP/MAS NMR and IR spectroscopy. Using these solid-state analytical techniques, it was found that both nitrogen atoms were protonated when excess hydrogen chloride was used for preparation of salts. On the other hand, when the equimolar amount of hydrogen chloride was used, piperazine nitrogen substituted by aryl was protonated

    Synthesis, Analysis, Cholinesterase-Inhibiting Activity and Molecular Modelling Studies of 3-(Dialkylamino)-2-hydroxypropyl 4-[(Alkoxy-carbonyl)amino]benzoates and Their Quaternary Ammonium Salts

    Get PDF
    Tertiary amines 3-(dialkylamino)-2-hydroxypropyl 4-[(alkoxycarbonyl)amino]benzoates and their quaternary ammonium salts were synthesized. The final step of synthesis of quaternary ammonium salts was carried out by microwave-assisted synthesis. Software-calculated data provided the background needed to compare fifteen new resulting compounds by their physicochemical properties. The acid dissociation constant (pKa) and lipophilicity index (log P) of tertiary amines were determined; while quaternary ammonium salts were characterized by software-calculated lipophilicity index and surface tension. Biological evaluation aimed at testing acetylcholinesterase and butyrylcholinesterase-inhibiting activity of synthesized compounds. A possible mechanism of action of these compounds was determined by molecular modelling study using combined techniques of docking; molecular dynamics simulations and quantum mechanics calculations

    An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors

    No full text
    Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.Fil: Vettorazzi, Marcela Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Angelina, Emilio Luis. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lima, Santiago. Virginia Commonwealth University. School of Medicine; Estados UnidosFil: Gonec, Tomas. Veterinarni A Farmaceuticka Univerzita Brno; República ChecaFil: Otevrel, Jan. Veterinarni A Farmaceuticka Univerzita Brno; República ChecaFil: Marvanova, Pavlina. Veterinarni A Farmaceuticka Univerzita Brno; República ChecaFil: Padrtova, Tereza. Veterinarni A Farmaceuticka Univerzita Brno; República ChecaFil: Mokry, Petr. Veterinarni A Farmaceuticka Univerzita Brno; República ChecaFil: Bobal, Pavel. Veterinarni A Farmaceuticka Univerzita Brno; República ChecaFil: Acosta, Lina M.. Universidad Industrial Santander; ColombiaFil: Palma, Alirio. Universidad Industrial Santander; ColombiaFil: Cobo, Justo. Universidad de Jaén; EspañaFil: Bobalova, Janette. Institute Of Analytical Chemistry Of The Czech Academy Of Sciences; República ChecaFil: Csollei, Jozef. Comenius University; EslovaquiaFil: Malik, Ivan. Comenius University; EslovaquiaFil: Alvarez, Sergio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; ArgentinaFil: Spiegel, Sarah. Virginia Commonwealth University. School of Medicine; Estados UnidosFil: Jampilek, Josef. Comenius University; EslovaquiaFil: Enriz, Ricardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentin
    corecore