1,705 research outputs found

    Molecular cloning and expression analysis of MPPa-2, a novel mouse transcript detected in a differential screen of pituitary libraries

    Get PDF
    We identified a novel isoform transcript, MPP alpha-2, of the mouse Mg(2+)-dependent protein phosphatase (MPP) alpha gene. The amino acid sequence encoded by MPP alpha-2 differs from the previously known MPP alpha-1 sequence only at the carboxyl terminal region. Northern and in situ hybridization analysis revealed differential expression patterns of these two transcripts in the embryo and in the adult organism, suggesting an elaborate regulation of the MPP alpha gene

    Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganites

    Full text link
    Recent research suggests that the charge carriers in the paramagnetic state of the magnetoresistive manganites are small polarons. Here we report studies of the oxygen-isotope effects on the intrinsic resistivity and thermoelectric power in several ferromagnetic manganites. The precise measurements of these isotope effects allow us to make a quantitative data analysis. Our results do not support a simple small-polaron model, but rather provide compelling evidence for the presence of small immobile bipolarons, i.e., pairs of small polarons. Since the bipolarons in the manganites are immobile, the present result alone appears not to give a positive support to the bipolaronic superconductivity theory for the copper-based perovskites.Comment: 6 pages, 5 figures, monor correction

    Spin-wave scattering at low temperatures in manganite films

    Full text link
    The temperature TT and magnetic field HH dependence of the resistivity ρ\rho has been measured for La0.8y_{0.8-y}Sr0.2_{0.2}MnO3_{3} (y=0 and 0.128) films grown on (100) SrTiO3_{3} substrates. The low-temperature ρ\rho in the ferromagnetic metallic region follows well ρ(H,T)=ρ0(H)+A(H)ωs/sinh(ωs/2kBT)+B(H)T7/2\rho (H,T)=\rho _{0}(H)+A(H)\omega_{s}/\sinh (\hbar \omega_{s}/2k_{B}T)+B(H)T^{7/2} with ρ0\rho _{0} being the residual resistivity. We attribute the second and third term to small-polaron and spin-wave scattering, respectively. Our analysis based on these scattering mechanisms also gives the observed difference between the metal-insulator transition temperatures of the films studied. Transport measurements in applied magnetic field further indicate that spin-wave scattering is a key transport mechanism at low temperatures.Comment: 5 pages, 4 figures. to appear in Phys. Rev.

    Polaron features of the one-dimensional Holstein Molecular Crystal Model

    Full text link
    The polaron features of the one-dimensional Holstein Molecular Crystal Model are investigated by improving a variational method introduced recently and based on a linear superposition of Bloch states that describe large and small polaron wave functions. The mean number of phonons, the polaron kinetic energy, the electron-phonon local correlation function, and the ground state spectral weight are calculated and discussed. A crossover regime between large and small polaron for any value of the adiabatic parameter ω0/t\omega_0/t is found and a polaron phase diagram is proposed.Comment: 12 pages, 2 figure

    Photoinduced IR absorption in (La(1-x)Sr(x)Mn)(1-\delta)O3: changes of the anti-Jahn-Teller polaron binding energy with doping

    Full text link
    Photoinduced IR absorption was measured in (La(1-x)Sr(x)Mn)(1-\delta)O3. A midinfrared peak centered at ~ 5000 cm1^{-1} was observed in the x=0 antiferromagnetic sample. The peak diminishes and softens as hole doping is increased. The origin of the photoinduced absorption peak is atributted to the photon assisted hopping of anti-Jahn-Teller polarons formed by photoexcited charge carriers, whose binding energy decreases with increasing hole doping. The shape of the peak indicates that the polarons are small.Comment: 5 pages, 3 figures, submitted to PR

    On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites

    Full text link
    Employing a variational approach that takes into account electron-phonon and magnetic interactions in La1xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, the effects of the magnetic field and the oxygen isotope substitution on the phase diagram, the electron-phonon correlation function and the infrared absorption at x=0.3x=0.3 are studied. The lattice displacements show a strong correlation with the conductivity and the magnetic properties of the system. Then the conductivity spectra are characterized by a marked sensitivity to the external parameters near the phase boundary.Comment: 10 figure

    Polaron formation for a non-local electron-phonon coupling: A variational wave-function study

    Full text link
    We introduce a variational wave-function to study the polaron formation when the electronic transfer integral depends on the relative displacement between nearest-neighbor sites giving rise to a non-local electron-phonon coupling with optical phonon modes. We analyze the ground state properties such as the energy, the electron-lattice correlation function, the phonon number and the spectral weight. Variational results are found in good agreement with analytic weak-coupling perturbative calculations and exact numerical diagonalization of small clusters. We determine the polaronic phase diagram and we find that the tendency towards strong localization is hindered from the pathological sign change of the effective next-nearest-neighbor hopping.Comment: 11 page

    Polaron Absorption in a Perovskite Manganite La0.7Ca0.3MnO3

    Full text link
    Temperature dependent optical conductivity spectra of a La0.7Ca0.3MnO3 (LCMO) sample were measured. In the metallic regime at very low temperatures, they clearly showed two types of absorption features, i.e., a sharp Drude peak and a broad mid-infrared absorption band, which could be explained as coherent and incoherent bands of a large lattice polaron. This elementary excitation in LCMO was found to be in a strong coupling regime and to have interactions with the spin degree of freedom.Comment: 4 pages and separate 4 figure

    Strain effect on electronic transport and ferromagnetic transition temperature in La0.9_{0.9}Sr0.1_{0.1}MnO3_{3} thin films

    Full text link
    We report on a systematic study of strain effects on the transport properties and the ferromagnetic transition temperature TcT_{c} of high-quality La0.9_{0.9}Sr0.1_{0.1}MnO3_{3} thin films epitaxially grown on (100) SrTiO3_{3} substrates. Both the magnetization and the resistivity are critically dependent on the film thickness. TcT_{c} is enhanced with decreasing the film thickness due to the compressive stain produced by lattice mismatch. The resistivity above 165 K of the films with various thicknesses is consistent with small polaronic hopping conductivity. The polaronic formation energy EPE_{P} is reduced with the decrease of film thickness. We found that the strain dependence of TcT_{c} mainly results from the strain-induced electron-phonon coupling. The strain effect on EPE_{P} is in good agreement with the theoretical predictions.Comment: 6 pages and 5 figures, accepted for publication in Phys. Rev.

    4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time

    Get PDF
    We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ
    corecore