15 research outputs found

    PLoS ONE / Exposure to indoor allergens in different residential settings and its influence on IgE sensitization in a geographically confined Austrian cohort

    Get PDF
    Background Exposure to indoor allergens is crucial for IgE sensitization and development of allergic symptoms. Residential settings influence the allergen amount in house dust and hence allergic sensitization. Within this study, we investigated allergen exposure and molecule-based IgE levels in a geographically confined region and evaluated the impact of housing, pets and cleaning. Methods 501 adolescents from Salzburg, Austria participated in this cross-sectional study. House dust samples were examined regarding major mite, cat, dog, and mold allergens using a multiplex assay. Serum samples of participants were analyzed for specific IgE to Der p 1, Der p 2, Fel d 1, Can f 1 and Alt a 1 using the multiplex array ImmunoCAP ISAC. Information on allergies, living areas, dwelling form (house, flat, farm), pets, and household cleanliness were obtained by a questionnaire. Results In investigated house dust samples, the concentration of cat allergen was highest while the prevalence of mold allergens was very low. Participants showed IgE sensitization to Der p 1 (13.2%), Der p 2 (18.2%), Fel d 1 (14.4%), Can f 1 (2.4%) and Alt a 1 (2.0%). In alpine regions, lower mite allergen concentrations were detected which correlated with reduced IgE levels. A trend for increased sensitization prevalence from rural to alpine to urban regions was noted. Living on farms resulted in lower sensitization prevalence to mite and cat allergens, even though exposure to mites was significantly elevated. The presence of cats was associated with a lower sensitization rate and IgE levels to cat and mite allergens, and less frequent allergic diseases. Cleaning did not impact allergen concentrations, while IgE reactivity to mites and allergic diseases were more pronounced when living in cleaner homes. Conclusion Allergen exposure to indoor allergens was influenced by setting of homes. Living in a farm environment and having a cat at home showed a pro tective effect for IgE sensitization and allergies. This cross-sectional study in combination with hereditary and lifestyle factors enables development of risk schemes for a more efficient management and potential prevention of allergic diseases

    Endolysosomal Degradation of Allergenic Ole e 1-Like Proteins: Analysis of Proteolytic Cleavage Sites Revealing T Cell Epitope-Containing Peptides

    Get PDF
    Knowledge of the susceptibility of proteins to endolysosomal proteases provides valuable information on immunogenicity. Though Ole e 1-like proteins are considered relevant allergens, little is known about their immunogenic properties and T cell epitopes. Thus, six representative molecules, i.e., Ole e 1, Fra e 1, Sal k 5, Che a 1, Phl p 11 and Pla l 1, were investigated. Endolysosomal degradation and peptide generation were simulated using microsomal fractions of JAWS II dendritic cells. Kinetics and peptide patterns were evaluated by gel electrophoresis and mass spectrometry. In silico MHC (major histocompatibility complex) class II binding prediction was performed with ProPred. Cleavage sites were assigned to the primary and secondary structure, and in silico docking experiments between the protease cathepsin S and Ole e 1 were performed. Different kinetics during endolysosomal degradation were observed while similar peptide profiles especially at the C-termini were detected. Typically, the identified peptide clusters comprised the previously-reported T cell epitopes of Ole e 1, consistent with an in silico analysis of the T cell epitopes. The results emphasize the importance of the fold on allergen processing, as also reflected by conserved cleavage sites located within the large flexible loop. In silico docking and mass spectrometry results suggest that one of the first Ole e 1 cleavages might occur at positions 107–108. Our results provided kinetic and structural information on endolysosomal processing of Ole e 1-like proteins

    Exposure to Indoor Allergens in Different Residential Settings and Its Influence on IgE Sensitization in a Geographically Confined Austrian Cohort.

    No full text
    Exposure to indoor allergens is crucial for IgE sensitization and development of allergic symptoms. Residential settings influence the allergen amount in house dust and hence allergic sensitization. Within this study, we investigated allergen exposure and molecule-based IgE levels in a geographically confined region and evaluated the impact of housing, pets and cleaning.501 adolescents from Salzburg, Austria participated in this cross-sectional study. House dust samples were examined regarding major mite, cat, dog, and mold allergens using a multiplex assay. Serum samples of participants were analyzed for specific IgE to Der p 1, Der p 2, Fel d 1, Can f 1 and Alt a 1 using the multiplex array ImmunoCAP ISAC. Information on allergies, living areas, dwelling form (house, flat, farm), pets, and household cleanliness were obtained by a questionnaire.In investigated house dust samples, the concentration of cat allergen was highest while the prevalence of mold allergens was very low. Participants showed IgE sensitization to Der p 1 (13.2%), Der p 2 (18.2%), Fel d 1 (14.4%), Can f 1 (2.4%) and Alt a 1 (2.0%). In alpine regions, lower mite allergen concentrations were detected which correlated with reduced IgE levels. A trend for increased sensitization prevalence from rural to alpine to urban regions was noted. Living on farms resulted in lower sensitization prevalence to mite and cat allergens, even though exposure to mites was significantly elevated. The presence of cats was associated with a lower sensitization rate and IgE levels to cat and mite allergens, and less frequent allergic diseases. Cleaning did not impact allergen concentrations, while IgE reactivity to mites and allergic diseases were more pronounced when living in cleaner homes.Allergen exposure to indoor allergens was influenced by setting of homes. Living in a farm environment and having a cat at home showed a protective effect for IgE sensitization and allergies. This cross-sectional study in combination with hereditary and lifestyle factors enables development of risk schemes for a more efficient management and potential prevention of allergic diseases

    Allergen concentrations in house dust samples collected in households with and without pets.

    No full text
    <p><b>(A)</b> Allergen concentrations in homes with and without a pet. <b>(B)</b> Allergen concentrations in homes with and without a cat. <b>(C)</b> Allergen concentrations in homes with and without a dog. Boxes indicate 25<sup>th</sup> to 75<sup>th</sup> percentile, horizontal line represents median, whiskers indicate 5<sup>th</sup> and 95<sup>th</sup> percentiles. *, p<0.05; ****, p<0.0001 for pairwise comparisons.</p

    IgE levels to indoor allergens in sera of pupils living in different settings.

    No full text
    <p><b>(A)</b> IgE levels of pupils living in different areas (urban, rural, alpine). <b>(B)</b> IgE levels of pupils living in different dwelling forms (flat, house, farm). Dots represent individual measurements, lines indicate mean values and whiskers the standard deviation. *, p<0.05; **, p<0.01; ****, p<0.0001.</p
    corecore