296 research outputs found

    Planet Hunters X: Searching for Nearby Neighbors of 75 Planet and Eclipsing Binary Candidates from the K2 Kepler Extended Mission

    Get PDF
    We present high-resolution observations of a sample of 75 K2 targets from Campaigns 1-3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II telescope. The median SOAR II-band and Keck KsK_s-band detection limits at 1" were ΔmI=4.4\Delta m_{I}=4.4~mag and ΔmKs=6.1\Delta m_{K_s}=6.1~mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be eclipsing binaries (EBs), and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3" of three candidate transiting exoplanet host stars and six likely EBs. Six of the nine detected companions are new discoveries; one of the six, EPIC 206061524, is associated with a planet candidate. Among the EB candidates, companions were only found near the shortest period ones (P<3P<3 days), which is in line with previous results showing high multiplicity near short-period binary stars. This high-resolution data, including both the detected companions and the limits on potential unseen companions, will be useful in future planet vetting and stellar multiplicity rate studies for planets and binaries.Comment: Accepted in A

    Planet Hunters. VI: An Independent Characterization of KOI-351 and Several Long Period Planet Candidates from the Kepler Archival Data

    Get PDF
    We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting â‰Č1\lesssim 1 AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period transiting planets; periods range from 124-904 days, eight of them more than one Earth year long. Seven of these 14 candidates reside in their host star's habitable zone.Comment: 27 pages, 6 figures, 5 tables, Accepted to AJ (in press) (updated title from original astro-ph submission

    A Population of Dipper Stars from the Transiting Exoplanet Survey Satellite Mission

    Full text link
    Dipper stars are a classification of young stellar objects that exhibit dimming variability in their light curves, dropping in brightness by 10-50%, likely induced by occultations due to circumstellar disk material. This variability can be periodic, quasi-periodic, or aperiodic. Dipper stars have been discovered in young stellar associations via ground-based and space-based photometric surveys. We present the detection and characterization of the largest collection of dipper stars to date: 293 dipper stars, including 234 new dipper candidates. We have produced a catalog of these targets, which also includes young stellar variables that exhibit predominately bursting-like variability and symmetric variability (equal parts bursting and dipping). The total number of catalog sources is 414. These variable sources were found in a visual survey of TESS light curves, where dipping-like variability was observed. We found a typical age among our dipper sources of <5 Myr, with the age distribution peaking at ~2 Myr, and a tail of the distribution extending to ages older than 20 Myr. Regardless of the age, our dipper candidates tend to exhibit infrared excess, which is indicative of the presence of disks. TESS is now observing the ecliptic plane, which is rich in young stellar associations, so we anticipate many more discoveries in the TESS dataset. A larger sample of dipper stars would enhance the census statistics of light curve morphologies and dipper ages.Comment: 19 pages, 11 figures, 1 table (included in latex source), accepted for publication in ApJ

    BU Canis Minoris -- the Most Compact Known Flat Doubly Eclipsing Quadruple System

    Full text link
    We have found that the 2+2 quadruple star system BU CMi is currently the most compact quadruple system known, with an extremely short outer period of only 121 days. The previous record holder was TIC 219006972 (Kostov et al. 2023), with a period of 168 days. The quadruple nature of BU CMi was established by Volkov et al. (2021), but they misidentified the outer period as 6.6 years. BU CMi contains two eclipsing binaries (EBs), each with a period near 3 days, and a substantial eccentricity of about 0.22. All four stars are within about 0.1 solar mass of 2.4 solar masses. Both binaries exhibit dynamically driven apsidal motion with fairly short apsidal periods of about 30 years, thanks to the short outer orbital period. The outer period of 121 days is found both from the dynamical perturbations, with this period imprinted on the eclipse timing variations (ETV) curve of each EB by the other binary, and by modeling the complex line profiles in a collection of spectra. We find that the three orbital planes are all mutually aligned to within 1 degree, but the overall system has an inclination angle near 83.5 degrees. We utilize a complex spectro-photodynamical analysis to compute and tabulate all the interesting stellar and orbital parameters of the system. Finally, we also find an unexpected dynamical perturbation on a timescale of several years whose origin we explore. This latter effect was misinterpreted by Volkov et al. (2021) and led them to conclude that the outer period was 6.6 years rather than the 121 days that we establish here.Comment: 19 pages, 8 pages, accepted to MNRA

    A Compact Multi-Planet System With A Significantly Misaligned Ultra Short Period Planet

    Get PDF
    We report the discovery of a compact multi-planet system orbiting the relatively nearby (78pc) and bright (K=8.9K=8.9) K-star, K2-266 (EPIC248435473). We identify up to six possible planets orbiting K2-266 with estimated periods of Pb_b = 0.66, P.02_{.02} = 6.1, Pc_c = 7.8, Pd_d = 14.7, Pe_e = 19.5, and P.06_{.06} = 56.7 days and radii of RP_P = 3.3 R⊕_{\oplus}, 0.646 R⊕_{\oplus}, 0.705 R⊕_{\oplus}, 2.93 R⊕_{\oplus}, 2.73 R⊕_{\oplus}, and 0.90 R⊕_{\oplus}, respectively. We are able to confirm the planetary nature of two of these planets (d & e) from analyzing their transit timing variations (md=8.9−3.8+5.7M⊕m_d= 8.9_{-3.8}^{+5.7} M_\oplus and me=14.3−5.0+6.4M⊕m_e=14.3_{-5.0}^{+6.4} M_\oplus), confidently validate the planetary nature of two other planets (b & c), and classify the last two as planetary candidates (K2-266.02 & .06). From a simultaneous fit of all 6 possible planets, we find that K2-266 b's orbit has an inclination of 75.32∘^{\circ} while the other five planets have inclinations of 87-90∘^{\circ}. This observed mutual misalignment may indicate that K2-266 b formed differently from the other planets in the system. The brightness of the host star and the relatively large size of the sub-Neptune sized planets d and e make them well-suited for atmospheric characterization efforts with facilities like the Hubble Space Telescope and upcoming James Webb Space Telescope. We also identify an 8.5-day transiting planet candidate orbiting EPIC248435395, a co-moving companion to K2-266.Comment: 18 pages, 12 figures, 7 tables, Accepted for Publication in the Astronomical Journa

    TIC 168789840: A Sextuply-Eclipsing Sextuple Star System

    Full text link
    We report the discovery of a sextuply-eclipsing sextuple star system from TESS data, TIC 168789840, also known as TYC 7037-89-1, the first known sextuple system consisting of three eclipsing binaries. The target was observed in Sectors 4 and 5 during Cycle 1, with lightcurves extracted from TESS Full Frame Image data. It was also previously observed by the WASP survey and ASAS-SN. The system consists of three gravitationally-bound eclipsing binaries in a hierarchical structure of an inner quadruple system with an outer binary subsystem. Follow-up observations from several different observatories were conducted as a means of determining additional parameters. The system was resolved by speckle interferometry with a 0."42 separation between the inner quadruple and outer binary, inferring an estimated outer period of ~2 kyr. It was determined that the fainter of the two resolved components is an 8.217 day eclipsing binary, which orbits the inner quadruple that contains two eclipsing binaries with periods of 1.570 days and 1.306 days. MCMC analysis of the stellar parameters has shown that the three binaries of TIC 168789840 are "triplets", as each binary is quite similar to the others in terms of mass, radius, and Teff. As a consequence of its rare composition, structure, and orientation, this object can provide important new insight into the formation, dynamics, and evolution of multiple star systems. Future observations could reveal if the intermediate and outer orbital planes are all aligned with the planes of the three inner eclipsing binaries

    TESS hunt for young and maturing exoplanets (THYME). III. A two-planet system in the 400 Myr Ursa major group

    Get PDF
    A.W.M. was supported through NASA's Astrophysics Data Analysis Program (80NSSC19K0583). M.L.W. was supported by a grant through NASA's K2 GO program (80NSSC19K0097). This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant No. DGE-1650116 to P.C.T. A.V.'s work was performed under contract with the California Institute of Technology/Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. D.D. acknowledges support from NASA through Caltech/JPL grant RSA-1006130 and through the TESS Guest Investigator Program grant 80NSSC19K1727.Exoplanets can evolve significantly between birth and maturity, as their atmospheres, orbits, and structures are shaped by their environment. Young planets (<1 Gyr) offer an opportunity to probe the critical early stages of this evolution, where planets evolve the fastest. However, most of the known young planets orbit prohibitively faint stars. We present the discovery of two planets transiting HD 63433 (TOI 1726, TIC 130181866), a young Sun-like (M∗=0.99±0.03) star. Through kinematics, lithium abundance, and rotation, we confirm that HD 63433 is a member of the Ursa Major moving group (τ=414±23 Myr). Based on the TESS light curve and updated stellar parameters, we estimate the planet radii are 2.15±0.10R⊕ and 2.67±0.12R⊕, the orbital periods are 7.11 and 20.55 days, and the orbital eccentricities are lower than about 0.2. Using HARPS-N velocities, we measure the Rossiter-McLaughlin signal of the inner planet, demonstrating that the orbit is prograde. Since the host star is bright (V=6.9), both planets are amenable to transmission spectroscopy, radial velocity measurements of their masses, and more precise determination of the stellar obliquity. This system is therefore poised to play an important role in our understanding of planetary system evolution in the first billion years after formation.PostprintPeer reviewe

    A second planet transiting LTT 1445A and a determination of the masses of both worlds

    Get PDF
    K.H. acknowledges support from STFC grant ST/R000824/1.LTT 1445 is a hierarchical triple M-dwarf star system located at a distance of 6.86 pc. The primary star LTT 1445A (0.257 M⊙) is known to host the transiting planet LTT 1445Ab with an orbital period of 5.36 days, making it the second-closest known transiting exoplanet system, and the closest one for which the host is an M dwarf. Using Transiting Exoplanet Survey Satellite data, we present the discovery of a second planet in the LTT 1445 system, with an orbital period of 3.12 days. We combine radial-velocity measurements obtained from the five spectrographs, Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, High Accuracy Radial Velocity Planet Searcher, High-Resolution Echelle Spectrometer, MAROON-X, and Planet Finder Spectrograph to establish that the new world also orbits LTT 1445A. We determine the mass and radius of LTT 1445Ab to be 2.87 ± 0.25 M⊕ and 1.304-0.060+0.067 R⊕, consistent with an Earth-like composition. For the newly discovered LTT 1445Ac, we measure a mass of 1.54-0.19+0.20 M⊕ and a minimum radius of 1.15 R⊕, but we cannot determine the radius directly as the signal-to-noise ratio of our light curve permits both grazing and nongrazing configurations. Using MEarth photometry and ground-based spectroscopy, we establish that star C (0.161 M⊙) is likely the source of the 1.4 day rotation period, and star B (0.215 M⊙) has a likely rotation period of 6.7 days. We estimate a probable rotation period of 85 days for LTT 1445A. Thus, this triple M-dwarf system appears to be in a special evolutionary stage where the most massive M dwarf has spun down, the intermediate mass M dwarf is in the process of spinning down, while the least massive stellar component has not yet begun to spin down.Publisher PDFPeer reviewe
    • 

    corecore