120 research outputs found

    Twist-2 Light-Cone Pion Wave Function

    Get PDF
    We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.Comment: 7 pages, LaTeX, 1 PS-figure, one reference added, minor changes in the tex

    Pion Interactions in Chiral Field Theories

    Get PDF
    We study in various chiral models the pion charge radius, πe3\pi_{e3} form factor ratio, πγγ\pi^\circ \to \gamma \gamma amplitude, charge pion polarizabilities, γγππ\gamma\gamma \to \pi^\circ \pi^\circ amplitude at low energies and the ππ\pi\pi s-wave I = 0 scattering length. We find that a quark-level linear sigma-model approach (also being consistent with tree-level vector meson dominance) is quite compatible with all of the above data.Comment: 12 pages, 9 eps figure

    Trouble in Asymptopia---the Hulthen Model on the Light Front

    Get PDF
    We use light-front dynamics to calculate the electromagnetic form-factor for the Hulthen model of the deuteron. For small momentum transfer Q^2 < 5 GeV^2 the relativistic effects are quite small. For Q^2 = 11 GeV^2 there is about a 13% discrepancy between the relativistic and non-relativistic approaches. For asymptotically large momentum transfer, however, the light-front form factor, log Q^2 /Q^4, markedly differs from the non-relativistic version, 1/Q^4. This behavior is also present for any wave function, such as those obtained from realistic potential models, which can be represented as a sum of Yukawa functions. Furthermore, the asymptotic behavior is in disagreement with the Drell-Yan-West relation. We investigate precisely how to determine the asymptotic behavior and confront the problem underlying troublesome form factors on the light front.Comment: 20 pages, 8 figures Accepted by Phys. Rev

    Pion Generalized Dipole Polarizabilities by Virtual Compton Scattering πeπeγ\pi e \to \pi e\gamma

    Full text link
    We present a calculation of the cross section and the event generator of the reaction πeπeγ\pi e\to \pi e \gamma. This reaction is sensitive to the pion generalized dipole polarizabilities, namely, the longitudinal electric αL(q2)\alpha_L(q^2), the transverse electric αT(q2)\alpha_T(q^2), and the magnetic β(q2)\beta(q^2) which, in the real-photon limit, reduce to the ordinary electric and magnetic polarizabilities αˉ\bar{\alpha} and βˉ\bar{\beta}, respectively. The calculation of the cross section is done in the framework of chiral perturbation theory at O(p4){\cal O}(p^4). A pion VCS event generator has been written which is ready for implementation in GEANT simulation codes or for independent use.Comment: 33 pages, Revtex, 15 figure

    Electroproduction of Charmonia off Nuclei

    Get PDF
    In a recent publication we have calculated elastic charmonium production in ep collisions employing realistic charmonia wave functions and dipole cross sections and have found good agreement with the data in a wide range of s and Q^2. Using the ingredients from those calculations we calculate exclusive electroproduction of charmonia off nuclei. Here new effects become important, (i) color filtering of the c-cbar pair on its trajectory through nuclear matter, (ii) dependence on the finite lifetime of the c-cbar fluctuation (coherence length) and (iii) gluon shadowing in a nucleus compared to the one in a nucleon. Total coherent and incoherent cross sections for C, Cu and Pb as functions of s and Q^2 are presented together with some differential cross sections. The results can be tested with future electron-nucleus colliders or in peripheral collisions of ultrarelativistic heavy ions.Comment: 21 pages of Latex including 14 figures; few misprints are fixe

    Charm and Bottom Semileptonic Decays

    Get PDF
    We review the present status of theoretical attempts to calculate the semileptonic charm and bottom decays and then present a calculation of these decays in the light--front frame at the kinematic point q2=0q^2=0. This allows us to evaluate the form factors at the same value of q2q^2, even though the allowed kinematic ranges for charm and bottom decays are very different. Also, at this kinematic point the decay is given in terms of only one form factor A0(0)A_{0}(0). For the ratio of the decay rates given by the E653 collaboration we show that the determination of the ratio of the Cabibbo--Kobayashi--Maskawa (CKM) matrix elements is consistent with that obtained from the unitarity constraint. At present, though, the unitarity method still has greater accuracy. Since comparisons of the semileptonic decays into ρ\rho and either electrons or muons will be available soon from the E791 Fermilab experiment, we also look at the massive muon case. We show that for a range of q2q^2 the SU(3)FSU(3)_F symmetry breaking is small even though the contributions of the various helicity amplitudes becomes more complicated. For BB decays, the decay BKˉB \rightarrow K^{*} \ell \bar{\ell} at q2=0q^2=0 involves an extra form factor coming from the photon contribution and so is not amenable to the same kind of analysis, leaving only the decay BKννˉB \rightarrow K^{*}\nu \bar{\nu} as a possibility. As the mass of the decaying particle increases we note that the SU(3)SU(3) symmetry becomes badly broken at q2=0q^2=0.Comment: Latex, 19 pages, two figures are attached, a minor change in the manuscript related to thi

    Relativistic Correction to the First Moment of the Spin-Dependent Structure Function of the Deuteron Γ1D(Q2)\Gamma_1^D(Q^2) in the Light-Cone Formalism

    Full text link
    The deuteron is considered as a superposition of two-nucleon Fock states with the invariant mass depending on the relative momentum in a proton-neutron pair. The condition of the transversality of the polarization vectors should be imposed at the Fock component level and these vectors depend on the invariant mass of the Fock component. Such "running" longitudinal polarization vector was not used in early estimates of relativistic effects. The technique for the calculation of the average helicity of the proton in the deuteron has been considered in the light-cone variables. A receipt has been proposed for the consistent calculation of relativistic nuclear corrections to the average helicity of the proton in the deuteron and to the first moment of the spin-dependent structure function of the deuteron.Comment: 34 pages, 6 figures, an extended version of the paper published in Journal of Experimental and Theoretical Physics, 201

    Generalized dipole polarizabilities and the spatial structure of hadrons

    Get PDF
    We present a phenomenological discussion of spin-independent, generalized dipole polarizabilities of hadrons entering the virtual Compton scattering process gamma* h -> gamma h. We introduce a new method of obtaining a tensor basis with appropriate Lorentz-invariant amplitudes which are free from kinematical singularities and constraints. We then motivate a gauge-invariant separation into a generalized Born term containing ground-state properties only, and a residual contribution describing the model-dependent internal structure. The generalized dipole polarizabilities are defined in terms of Lorentz-invariant residual amplitudes. Particular emphasis is laid on a physical interpretation of these quantities as characterizing the spatial distributions of the induced electric polarization and magnetization of hadrons. It is argued that three dipole polarizabilities, namely the longitudinal electric alpha_L(q^2), the transverse electric alpha_T(q^2), and the magnetic beta(q^2) ones are required in order to fully reconstruct local polarizations induced by soft external fields in a hadron. One of these polarizabilities, alpha_T(q^2), describes an effect of higher order in the soft final-photon momentum q'. We argue that the associated spatial distributions obtained via the Fourier transforms in the Breit frame are meaningful even for such a light particle as the pion. The spatial distributions are determined at large distances r ~ 1/m_pi for pions, kaons, and octet baryons by use of ChPT.Comment: 41 pages, 5 figures, RevTex fil

    Chiral Anomaly and Eta-Eta' Mixing

    Full text link
    We determine the ηη\eta-\eta' mixing angle via a procedure relatively independent of theoretical assumptions by simultaneously fitting ηeta\eta- eta' reactions involving the anomaly--η,ηγγ,π+πγ\eta,\eta'\to\gamma\gamma, \pi^+\pi^-\gamma. We extract reasonably precise renormalized values of the octet and singlet pseudoscalar decay constants F8,F0F_8,F_0 as well as the mixing angle θ\theta.Comment: 12 page standard Latex file, three figures, added comment
    corecore