92 research outputs found

    Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms

    Get PDF
    This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species – gaseous oxidized mercury (GOM) and particle-bound mercury (HgP), collectively Hg(II) – in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Mercury scavenging efficiencies from various initial altitudes are diagnosed for a case study of a typical strong convective storm in the Southeast US. Assuming that soluble mercury concentrations are initially vertically uniform, the model results suggest that 60% of mercury deposited to the surface in rainwater originates from above the boundary layer (> 2 km). The free troposphere could supply a larger fraction of mercury wet deposition if GOM and HgP concentrations increase with altitude. We use radiosonde observations in the Northeast and Southeast to characterize three important environmental characteristics that influence thunderstorm morphology: convective available potential energy (CAPE), vertical shear (0–6 km) of horizontal wind (SHEAR) and precipitable water (PW). The Southeast US generally has lower SHEAR and higher CAPE and PW. We then use RAMS to test how PW and SHEAR impact mercury scavenging and deposition, while keeping the initial Hg(II) concentrations fixed in all experiments. We found that the mercury concentration in rainfall is sensitive to SHEAR with the nature of sensitivity differing depending upon the PW. Since CAPE and PW cannot be perturbed independently, we test their combined influence using an ensemble of thunderstorm simulations initialized with environmental conditions for the Northeast and Southeast US. These simulations, which begin with identical Hg(II) concentrations, predict higher mercury concentrations in rainfall from thunderstorms forming in the environmental conditions over the Southeast US compared to the Northeast US. A final simulation of a stratiform rain event produces lower mercury concentrations than in thunderstorms forming in environments typical of the Southeast US. The stratiform cloud scavenges mercury from the lowest ~ 4 km of the atmosphere, while thunderstorms scavenge up to ~ 10 km

    Multiproxy analysis of permafrost preserved faeces provides an unprecedented insight into the diets and habitats of extinct and extant megafauna

    Get PDF
    The study of faecal samples to reconstruct the diets and habitats of extinct megafauna has traditionally relied on pollen and macrofossil analysis. DNA metabarcoding has emerged as a valuable tool to complement and refine these proxies. While published studies have compared the results of these three proxies for sediments, this comparison is currently lacking for permafrost preserved mammal faeces. Moreover, most metabarcoding studies have focused on a single plant-specific DNA marker region. In this study, we target both the commonly used chloroplast trnL P6 loop as well as nuclear ribosomal ITS (nrITS). The latter can increase taxonomic resolution of plant identifications but requires DNA to be relatively well preserved because of the target length (∼300–500 bp). We compare DNA results to pollen and macrofossil analyses from permafrost and ice-preserved faeces of Pleistocene and Holocene megafauna. Samples include woolly mammoth, horse, steppe bison as well as Holocene and extant caribou. Most plant identifications were found using DNA, likely because the studied faeces contained many vegetative remains that could not be identified using macrofossils or pollen. Several taxa were, however, identified to lower taxonomic levels uniquely with macrofossil and pollen analysis. The nrITS marker provides species level taxonomic resolution for commonly encountered plant families that are hard to distinguish using the other proxies (e.g. Asteraceae, Cyperaceae and Poaceae). Integrating the results from all proxies, we are able to accurately reconstruct known diets and habitats of the extant caribou. Applying this approach to the extinct mammals, we find that the Holocene horse and steppe bison were not strict grazers but mixed feeders living in a marshy wetland environment. The mammoths showed highly varying diets from different non-analogous habitats. This confirms the presence of a mosaic of habitats in the Pleistocene ‘mammoth steppe’ that mammoths could fully exploit due to their flexibility in food choice

    Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe

    Get PDF
    The North Atlantic region experienced abrupt high-amplitude cooling at the onset of the Younger Dryas stadial. However, due to chronological uncertainties in the available terrestrial records it is unclear whether terrestrial ecosystem response to this event was instantaneous and spatially synchronous, or whether regional or time-transgressive lags existed. Here we use new palynological results from a robustly dated lake sediment sequence retrieved from lake Hämelsee (north Germany) to show that vegetation change started at 12,820 cal. yr BP, concurrent with the onset of changes in local climate. A comparison of the Hämelsee results to a compilation of precisely dated palynological records shows instant and, within decadal-scale dating uncertainty, synchronous response of the terrestrial plant community to Late-Glacial climate change across northwest Europe. The results indicate that the environmental impact of climate cooling was more severe than previously thought and illustrates the sensitivity of natural terrestrial ecosystems to external forcing. © 2022, The Author(s)

    Biodiversity responses to Lateglacial climate change in the subdecadally-resolved record of Lake Hämelsee (Germany)

    Get PDF
    Anthropogenically-driven climate warming and land use change are the main causes of an ongoing decrease in global biodiversity. It is unclear how ecosystems, particularly freshwater habitats, will respond to such continuous and potentially intensifying disruptions. Here we analyse how different components of terrestrial and aquatic ecosystems responded to natural climate change during the Lateglacial. By applying a range of analytical techniques (sedimentology, palaeoecology, geochemistry) to the well-dated sediment archive from Lake Hämelsee (Germany), we show evidence for vegetation development, landscape dynamics and aquatic ecosystem change typical for northwest Europe during the Lateglacial. By particularly focussing on periods of abrupt climate change, we determine the timing and duration of changes in biodiversity in response to external forcing. We show that onsets of changes in biodiversity indicators (e.g. diatom composition, Pediastrum concentrations) lag changes in environmental records (e.g. loss-on-ignition) by a few decades, particularly at the Allerød/Younger Dryas transition. Most biodiversity indicators showed transition times of 10–50 years, whereas environmental records typically showed a 50–100 year long transition. In some cases, transition times observed for the compositional turnover or productivity records were up to 185 years, which could have been the result of the combined effects of direct (e.g. climate) and indirect (e.g. lake stratification) drivers of ecosystem change. Our results show differences in timing and duration of biodiversity responses to external disturbances, suggesting that a multi-decadal view needs to be taken when designing effective conservation management of freshwater ecosystems under current global warming
    • …
    corecore