38 research outputs found

    Expression of microRNAs in cerebrospinal fluid of dogs with central nervous system disease

    Get PDF
    Abstract In this pilot study we investigated the expression of 14 microRNAs in the cerebrospinal fluid (CSF) of dogs with neoplastic, inflammatory and degenerative disorders affecting the central nervous system (CNS). CSF microRNA (miRNA) expression profiles were compared to those from dogs with neurological signs but no evidence of structural or inflammatory CNS disease. Seven miRNAs were easily detected in all samples: miR-10b-5p, miR-19b, miR-21-5p, miR-30b-5p, miR-103a-3p, miR-124, and miR-128-3p. Expression of miR-10b-5p was significantly higher in the neoplastic group compared to other groups. There was no relation between miRNA expression and either CSF nucleated cell count or CSF protein content. Higher expression of miR-10b-5p in the neoplastic group is consistent with previous reports in human medicine where aberrant expression of miR-10b is associated with various neoplastic diseases of the CNS

    Osteoinduction of Human Mesenchymal Stem Cells by Bioactive Composite Scaffolds without Supplemental Osteogenic Growth Factors

    Get PDF
    The development of a new family of implantable bioinspired materials is a focal point of bone tissue engineering. Implant surfaces that better mimic the natural bone extracellular matrix, a naturally nano-composite tissue, can stimulate stem cell differentiation towards osteogenic lineages in the absence of specific chemical treatments. Herein we describe a bioactive composite nanofibrous scaffold, composed of poly-caprolactone (PCL) and nano-sized hydroxyapatite (HA) or beta-tricalcium phosphate (TCP), which was able to support the growth of human bone marrow mesenchymal stem cells (hMSCs) and guide their osteogenic differentiation at the same time. Morphological and physical/chemical investigations were carried out by scanning, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy, mechanical and wettability analysis. Upon culturing hMSCs on composite nanofibers, we found that the incorporation of either HA or TCP into the PCL nanofibers did not affect cell viability, meanwhile the presence of the mineral phase increases the activity of alkaline phosphatase (ALP), an early marker of bone formation, and mRNA expression levels of osteoblast-related genes, such as the Runt-related transcription factor 2 (Runx-2) and bone sialoprotein (BSP), in total absence of osteogenic supplements. These results suggest that both the nanofibrous structure and the chemical composition of the scaffolds play a role in regulating the osteogenic differentiation of hMSCs

    Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation

    Get PDF
    A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair

    MicroRNA Functions in Osteogenesis and Dysfunctions in Osteoporosis

    No full text
    MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression that control osteoblast mediated bone formation and osteoclast-related bone remodelling. Deregulation of miRNA mediated mechanisms is emerging as an important pathological factor in bone degeneration (e.g., osteoporosis) and other bone-related diseases. MiRNAs are intriguing regulatory molecules that are networked with cell signaling pathways and intricate transcriptional programs through ingenuous circuits with remarkably simple logic. This overview examines key principles by which miRNAs control differentiation of osteoblasts as they evolve from mesenchymal stromal cells during osteogenesis, or of osteoclasts as they originate from monocytic precursors in the hematopoietic lineage during osteoclastogenesis. Of particular note are miRNAs that are temporally up-regulated during osteoblastogenesis (e.g., miR-218) or osteoclastogenesis (e.g., miR-148a). Each miRNA stimulates differentiation by suppressing inhibitory signalling pathways (β€˜double-negative’ regulation). The excitement surrounding miRNAs in bone biology stems from the prominent effects that individual miRNAs can have on biological transitions during differentiation of skeletal cells and correlations of miRNA dysfunction with bone diseases. MiRNAs have significant clinical potential which is reflected by their versatility as disease-specific biomarkers and their promise as therapeutic agents to ameliorate or reverse bone tissue degeneration
    corecore