3,563 research outputs found

    An Expected Average Run Length (EARL) Performance Comparison of the SSGR and EWMA Control Charts

    Get PDF
    The acceleration use of control charts in industrial processes has led to the effectiveness in their evaluation by quality practitioners. This is crucial, as it influences their decisions on the choice of which control charts to employ. This study aims to explore and compare the performance of the side sensitive group runs (SSGR) and exponentially weighted moving average (EWMA) control charts. In general, the average run length (ARL) characteristics were used to evaluate the performance of these control charts. The ARL, which considers the exact shift size in the process, is restricted in the case when the practitioner cannot identify the process shift size (unknown shift size). In this situation, the expected average run length (EARL) is an alternative performance criterion. Upon comparison of the findings obtained, the EWMA chart has superior performance when (δmin, δmax) = (0.1, 0.4). In contrast, the SSGR chart overtakes the EWMA chart when (δmin, δmax) = (0.5, 0.8) and (δmin, δmax) = (0.9, 1.2), except when the sample size n = 3 for (δmin, δmax) = (0.5, 0.8). For this particular combination, the EWMA chart performs slightly better than the SSGR chart. The outcome of this study is expected to contribute to practitioners in identifying suitable control charts in process monitoring and implementation

    An Expected Average Run Length (EARL) Performance Comparison of the SSGR and EWMA Control Charts

    Get PDF
    The acceleration use of control charts in industrial processes has led to the effectiveness in their evaluation by quality practitioners. This is crucial, as it influences their decisions on the choice of which control charts to employ. This study aims to explore and compare the performance of the side sensitive group runs (SSGR) and exponentially weighted moving average (EWMA) control charts. In general, the average run length (ARL) characteristics were used to evaluate the performance of these control charts. The ARL, which considers the exact shift size in the process, is restricted in the case when the practitioner cannot identify the process shift size (unknown shift size). In this situation, the expected average run length (EARL) is an alternative performance criterion. Upon comparison of the findings obtained, the EWMA chart has superior performance when (δmin, δmax) = (0.1, 0.4). In contrast, the SSGR chart overtakes the EWMA chart when (δmin, δmax) = (0.5, 0.8) and (δmin, δmax) = (0.9, 1.2), except when the sample size n = 3 for (δmin, δmax) = (0.5, 0.8). For this particular combination, the EWMA chart performs slightly better than the SSGR chart. The outcome of this study is expected to contribute to practitioners in identifying suitable control charts in process monitoring and implementation

    Opinion diversity and community formation in adaptive networks

    Full text link
    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. The existing models of such co-evolution typically lead to the final states where network nodes either reach a global consensus or break into separated communities, each of which holding its own community consensus. Such results, however, can hardly explain the richness of real-life observations that opinions are always diversified with no global or even community consensus, and people seldom, if not never, totally cut off themselves from dissenters. In this article, we show that, a simple model integrating consensus formation, link rewiring and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities remain to be interconnected by non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the phase transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity, etc.Comment: 12 pages, 8 figures, Journa

    Detection of viable bacteria in environmental water samples using DNase I and PCR method. International Journal of Environmental Studies

    Get PDF
    In this study, we tested the potential application of a previously developed method in detecting Escherichia coli in environmental water samples. To increase the sensitivity of the method, and the recovery of microbial cells, water samples were filtered before being subjected to DNase treatment and polymerase chain reaction amplification. Results showed that DNase I treatment and PCR reaction were not affected by inhibitors as the expected amplicon was successfully amplified in autoclaved environmental waters spiked with E. coli. Then, we applied this method to naturally contaminated environmental water samples. We firstly confirmed the presence of coliforms and E. coli in these water samples by plating in eosin methylene blue agar. Simultaneous PCR amplification targeting Lac Z and uidR gene of total coliforms and E. coli respectively demonstrated that this developed method is potentially applicable for routine microbial assessment of health risks related to viable microorganisms in environmental or drinking waters

    Imaging and manipulating the structural machinery of living cells on the micro- and nanoscale

    Get PDF
    The structure, physiology, and fate of living cells are all highly sensitive to mechanical forces in the cellular microenvironment, including stresses and strains that originate from encounters with the extracellular matrix (ECM), blood and other flowing materials, and neighbouring cells. This relationship between context and physiology bears tremendous implications for the design of cellular micro-or nanotechnologies, since any attempt to control cell behavior in a device must provide the appropriate physical microenvironment for the desired cell behavior. Cells sense, process, and respond to biophysical cues in their environment through a set of integrated, multi-scale structural complexes that span length scales from single molecules to tens of microns, including small clusters of force-sensing molecules at the cell surface, micron-sized cell-ECM focal adhesion complexes, and the cytoskeleton that permeates and defines the entire cell. This review focuses on several key technologies that have recently been developed or adapted for the study of the dynamics of structural micro-and nanosystems in living cells and how these systems contribute to spatially-and temporally-controlled changes in cellular structure and mechanics. We begin by discussing subcellular laser ablation, which permits the precise incision of nanoscale structural elements in living cells in order to discern their mechanical properties and contributions to cell structure. We then discuss fluorescence recovery after photobleaching and fluorescent speckle microscopy, two live-cell fluorescence imaging methods that enable quantitative measurement of the binding and transport properties of specific proteins in the cell. Finally, we discuss methods to manipulate cellular structural networks by engineering the extracellular environment, including microfabrication of ECM distributions of defined geometry and microdevices designed to measure cellular traction forces at micron-scale resolution. Together, these methods form a powerful arsenal that is already adding significantly to our understanding of the nanoscale architecture and mechanics of living cells and may contribute to the rational design of new cellular micro-and nanotechnologies

    EXACT RUN LENGTH DISTRIBUTION OF THE DOUBLE SAMPLING X CHART WITH ESTIMATED PROCESS PARAMETERS

    Get PDF
    Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL) criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS) X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL). A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose

    EXACT RUN LENGTH DISTRIBUTION OF THE DOUBLE SAMPLING X CHART WITH ESTIMATED PROCESS PARAMETERS

    Get PDF
    Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL) criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS) X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL). A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose

    Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons

    Get PDF
    The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5–6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments

    Aged-senescent cells contribute to impaired heart regeneration

    Get PDF
    Aging leads to increased cellular senescence and is associated with decreased potency of tissue-specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32-86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A , SA-β-gal, DNA damage γH2AX, telomere length, senescence-associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK-ATTAC or wild-type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67-, EdU-positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart
    corecore