244 research outputs found

    Right bundle-branch block in coronary artery disease: a hemodynamic and angiographic study

    Get PDF
    Thirty-four patients with right bundle-branch block (RBBB) and coronary artery disease (CAD) (RBBB was not pre-existent to clinical development of CAD) and 52 consecutive CAD patients without conduction disturbances were studied and compared to verify whether the presence of RBBB implies more severe and extensive left ventricular myocardial damage as well as more severe CAD. The two groups did not differ either in age or in New York Heart Association functional class. The incidence or location of previous myocardial infarction (MI) was not different in the two groups. No significant differences were found in left ventricular volumes or ejection fraction. Higher end-diastolic left ventricular pressure and more severe and diffuse left ventricular wall asynergy were present in RBBB patients. At coronary arteriography, more severe involvement of the right coronary artery in CAD patients without conduction disturbances was the only significant finding. The group of patients with CAD and RBBB without MI showed significantly less involvement of the left anterior descending coronary artery and significantly more severe damage of the inferior wall of the left ventricle than the group with CAD without RBBB and MI. Patients with inferior wall MI and RBBB had more severe asynergy of the posterobasal region of the left ventricle than did patients with inferior wall MI without RBBB. The group of patients with anterior wall MI and RBBB had a higher left ventricular end-diastolic pressure, a lower left ventricular ejection fraction, and a greater extent of myocardial damage compared to similar patients of the control group. The groups with MI and RBBB had the same Gensini's score as similar groups without RBBB. (ABSTRACT TRUNCATED AT 250 WORDS

    Erythrocyte morphology automated analysis: proposal for a new prediction tool of essential hypertension diagnosis

    Get PDF
    Erythrocyte morphology has already been studied in essential hypertension (EH) and cell membrane alterations have been observed. Relationships among red cell rheological, biochemical, and morphological properties still appear complex and are not clearly understood

    Intrinsically conductive polymers for striated cardiac muscle repair

    Get PDF
    One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult

    New Histamine-Related Five-Membered N-Heterocycle Derivatives as Carbonic Anhydrase I Activators

    Get PDF
    A series of histamine (HST)-related compounds were synthesized and tested for their activating properties on five physiologically relevant human Carbonic Anhydrase (hCA) isoforms (I, II, Va, VII and XIII). The imidazole ring of HST was replaced with different 5-membered heterocycles and the length of the aliphatic chain was varied. For the most interesting compounds some modifications on the terminal amino group were also performed. The most sensitive isoform to activation was hCA I (K(A) values in the low micromolar range), but surprisingly none of the new compounds displayed activity on hCA II. Some derivatives (1, 3a and 22) displayed an interesting selectivity for activating hCA I over hCA II, Va, VII and XIII

    Smart ECM-based electrospun biomaterials for skeletal muscle regeneration

    Get PDF
    The development of smart and intelligent regenerative biomaterials for skeletal muscle tissue engineering is an ongoing challenge, owing to the requirement of achieving biomimetic systems able to communicate biological signals and thus promote optimal tissue regeneration. Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements, down to nanoscale and the properties of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the “click” concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the “click” reactions. In this paper, we first provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials. Finally, we propose a design of composite electrospun biomaterials suitable for skeletal muscle tissue regeneration

    Muscle acellular scaffold as a biomaterial: Effects on C2C12 cell differentiation and interaction with the murine host environment

    Get PDF
    The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environmentin vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis.In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss
    • …
    corecore