19 research outputs found

    West Nile Virus lineage 2 overwintering in Italy

    Get PDF
    In January 2022, West Nile virus (WNV) lineage 2 (L2) was detected in an adult female goshawk rescued near Perugia in the region of Umbria (Italy). The animal showed neurological symptoms and died 15 days after its recovery in a wildlife rescue center. This was the second case of WNV infection recorded in birds in the Umbria region during the cold season, when mosquitoes, the main WNV vectors, are usually not active. According to the National Surveillance Plan, the Umbria region is included amongst the WNV low-risk areas. The necropsy evidenced generalized pallor of the mucous membranes, mild splenomegaly, and cerebral edema. WNV L2 was detected in the brain, heart, kidney, and spleen homogenate using specific RT-PCR. Subsequently, the extracted viral RNA was sequenced. A Bayesian phylogenetic analysis performed through a maximum-likelihood tree showed that the genome sequence clustered with the Italian strains within the European WNV strains among the central-southern European WNV L2 clade. These results, on the one hand, confirmed that the WNV L2 strains circulating in Italy are genetically stable and, on the other hand, evidenced a continuous WNV circulation in Italy throughout the year. In this report case, a bird-to-bird WNV transmission was suggested to support the virus overwintering. The potential transmission through the oral route in a predatory bird may explain the relatively rapid spread of WNV, as well as other flaviviruses characterized by similar transmission patterns. However, rodent-to-bird transmission or mosquito-to-bird transmission cannot be excluded, and further research is needed to better understand WNV transmission routes during the winter season in Ital

    Spatial and temporal dynamics of West Nile virus between Africa and Europe

    Get PDF
    It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruse

    Transplacental transmission of the Italian Bluetongue virus serotype 2 in sheep

    No full text
    In order to study the capability of a Bluetongue virus serotype 2 (BTV‑2) field isolate to cross the placental barrier, 2 groups of 5 pregnant ewes were infected with a field BTV‑2 Italian strain (Group A) or with the same strain passaged once in Culicoides cells (Kc) (Group B). Following infection, EDTA‑blood and serum samples were collected weekly and tested for the presence of BTV RNA/infectious virus and anti‑BTV‑2 antibodies, respectively. At lambing, precolostral EDTA‑blood and serum samples were collected from lambs and tested as before. The lambs were then sampled as scheduled for the dams. All sheep seroconverted on day 12 post‑infection (pi) and remained seropositive throughout the sampling period (day 68 pi). BTV was isolated from day 7 pi to day 14 pi in animals of Group A and from day 5 pi to day 12 pi in animals of Group B. None of the 14 lambs born had pre‑colostral antibodies. Three lambs born from two ewes of Group B were viraemic at birth and in one lamb infectious virus was isolated from blood up to 11 days of age. This study proved for the first time that a single passage of BTV‑2 field strain in Kc cells is able to give to BTV the ability to cross the placenta barrier and infect foetal tissues

    Immunization with Usutu virus and with a chimeric West Nile virus (WNV) harboring Usutu-E protein protects immunocompetent adult mice against lethal challenges with different WNV lineage 1 and 2 strains

    No full text
    West Nile virus (WNV) and Usutu virus (USUV), two antigenically related flaviviruses co-circulating in Europe, can cause severe neurological disease in animals and humans. The immune response against USUV and WNV and their immunopathogenesis are still poorly investigated. Here we present results upon sequential infections of adult immunocompetent CD-1 and BALB/c mice primed with two different doses (high dose, HD or low dose, LD) of an USUV isolate and challenged with HD or LD of three different WNV isolates. CD-1 and BALB/c LD USUVprimed mice, regardless of the dose, are largely protected from lethal WNV challenges despite showing no detectable neutralizing antibodies. Furthermore, mice immunized with a chimeric virus harboring the E protein of USUV within the WNV backbone (WNVE-USUV) are protected against a lethal challenge with WNV. We believe these findings could contribute to understanding the dynamics of the interaction during sequential infection of these two flaviviruses

    Intravenous Infection of Small Ruminants Suggests a Goat-Restricted Host Tropism and Weak Humoral Immune Response for an Atypical Bluetongue Virus Isolate

    No full text
    Bluetongue virus (BTV) is the etiologic agent of bluetongue (BT), a viral WOAH-listed disease affecting wild and domestic ruminants, primarily sheep. The outermost capsid protein VP2, encoded by S2, is the virion’s most variable protein, and the ability of reference sera to neutralize an isolate has so far dictated the differentiation of 24 classical BTV serotypes. Since 2008, additional novel BTV serotypes, often referred to as “atypical” BTVs, have been documented and, currently, the full list includes 36 putative serotypes. In March 2015, a novel atypical BTV strain was detected in the blood of asymptomatic goats in Sardinia (Italy) and named BTV-X ITL2015. The strain re-emerged in the same region in 2021 (BTV-X ITL2021). In this study, we investigated the pathogenicity and kinetics of infection of BTV-X ITL2021 following subcutaneous and intravenous infection of small ruminants. We demonstrated that, in our experimental settings, BTV-X ITL2021 induced a long-lasting viraemia only when administered by the intravenous route in goats, though the animals remained healthy and, apparently, did not develop a neutralizing immune response. Sheep were shown to be refractory to the infection by either route. Our findings suggest a restricted host tropism of BTV-X and point out goats as reservoirs for this virus in the field

    Descrizione dei focolai di west nile disease nel 2011 nella regione Sardegna, Italia

    No full text
    In 2011, strains of West Nile Virus (WNV) belonging to lineage 1 spread for the first time in Sardinia region (Italy). In contrast to previous WNV Italian incursion, the strains were found in Culex modestus and, more surprisingly, they were able to cause severe clinical signs in the affected birds. Based on the partial sequence of the NS3 encoding gene, the Sardinian WNV strains demonstrated a high similarity with the other WNV strains recently detected in the Mediterranean Basin. Nonetheless, the 2011 Sardinian sequences were grouped in a distinct sub-cluster. Both the NS3-249P and NS3-249T genotypes were detected in the Sardinian outbreaks confirming that the co-circulation of different genotypes in the affected population might be common for WNV as for many RNA viruses. No association, however, was observed between virulence and viral genotype

    Vector Competence of Italian Populations of Culicoides for Some Bluetongue Virus Strains Responsible for Recent Northern African and European Outbreaks

    No full text
    The distribution of Bluetongue virus (BTV) in Europe can be represented by two distinct and interconnected epidemiological systems (episystems), each characterized by different ecological characteristics and vector species. This study investigated the vector competence of Italian populations of Culicoides imicola and Culicoides obsoletus/scoticus to some representative BTV strains after artificial oral infection. The BTV strains were selected according to their ability to spread to one or both episystems and included BTV-4 ITA, responsible of the recent Italian and French BTV-4 outbreaks; the BTV-2 strain which caused the first BTV incursion in Italy, Corsica, and Balearic Islands; BTV-4 MOR, responsible for the epidemic in Morocco; and BTV-8, the strain which spread through Europe between 2006 and 2008. Blood-soaked cotton pledgets and Hemotek membrane feeder using Parafilm® membrane were used to artificially feed midges. For each population/strain, recovery rates (positive/tested heads) were evaluated using serogroup- and serotype-specific RT-PCR. The trial demonstrated that, except for the Abruzzo population of C. obsoletus/C. scoticus, which was refractory to BTV-4 MOR infection, all the investigated Culicoides populations are susceptible to the selected BTV strains and that, if prompt vaccination programs and restriction measures had not been implemented, BTV-2 and BTV-4 MOR could have spread all over Europe
    corecore