4,265 research outputs found

    Casimir effect of electromagnetic field in D-dimensional spherically symmetric cavities

    Full text link
    Eigenmodes of electromagnetic field with perfectly conducting or infinitely permeable conditions on the boundary of a D-dimensional spherically symmetric cavity is derived explicitly. It is shown that there are (D-2) polarizations for TE modes and one polarization for TM modes, giving rise to a total of (D-1) polarizations. In case of a D-dimensional ball, the eigenfrequencies of electromagnetic field with perfectly conducting boundary condition coincides with the eigenfrequencies of gauge one-forms with relative boundary condition; whereas the eigenfrequencies of electromagnetic field with infinitely permeable boundary condition coincides with the eigenfrequencies of gauge one-forms with absolute boundary condition. Casimir energy for a D-dimensional spherical shell configuration is computed using both cut-off regularization and zeta regularization. For a double spherical shell configuration, it is shown that the Casimir energy can be written as a sum of the single spherical shell contributions and an interacting term, and the latter is free of divergence. The interacting term always gives rise to an attractive force between the two spherical shells. Its leading term is the Casimir force acting between two parallel plates of the same area, as expected by proximity force approximation.Comment: 28 page

    An Efficient Computational Approach to a Class of Minmax Optimal Control Problems with Applications

    Get PDF
    In this paper, an efficient computation method is developed for solving a general class of minmax optimal control problems, where the minimum deviation from the violation of the continuous state inequality constraints is maximized. The constraint transcription method is used to construct a smooth approximate function for each of the continuous state inequality constraints. We then obtain an approximate optimal control problem with the integral of the summation of these smooth approximate functions as its cost function. A necessary condition and a sufficient condition are derived showing the relationship between the original problem and the smooth approximate problem. We then construct a violation function from the solution of the smooth approximate optimal control problem and the original continuous state inequality constraints in such a way that the optimal control of the minmax problem is equivalent to the largest root of the violation function, and hence can be solved by the bisection search method. The control parametrization and a time scaling transform are applied to these optimal control problems. We then consider two practical problems: the obstacle avoidance optimal control problem and the abort landing of an aircraft in a windshear downburst

    Design of interpolative sigma-delta modulators via semi-indefinite programming

    Get PDF
    This correspondence considers the optimized design of interpolative sigma delta modulators (SDMs). The first optimization problem is to determine the denominator coefficients. The objective of the optimization problem is to minimize the passband energy of the denominator of the loop filter transfer function (excluding the dc poles) subject to the continuous constraint of this function defined in the frequency domain. The second optimization problem is to determine the numerator coefficients in which the cost function is to minimize the stopband ripple energy of the loop filter subject to the stability condition of the noise transfer function (NTF) and signal transfer function (STF). These two optimization problems are actually quadratic semi-infinite programming (SIP) problems. By employing the dual-parameterization method, global optimal solutions that satisfy the corresponding continuous constraints are guaranteed if the filter length is long enough. The advantages of this formulation are the guarantee of the stability of the transfer functions, applicability to design of rational infinite-impulse-response (IIR) filters without imposing specific filter structures, and the avoidance of iterative design of numerator and denominator coefficients. Our simulation results show that this design yields a significant improvement in the signal-to-noise ratio (SNR) and have a larger stability range, compared with the existing designs

    Optimal design of magnitude responses of rational infinite impulse response filters

    Get PDF
    This correspondence considers a design of magnitude responses of optimal rational infinite impulse response (IIR) filters. The design problem is formulated as an optimization problem in which a total weighted absolute error in the passband and stopband of the filters (the error function reflects a ripple square magnitude) is minimized subject to the specification on this weighted absolute error function defined in the corresponding passband and stopband, as well as the stability condition. Since the cost function is nonsmooth and nonconvex, while the constraints are continuous, this kind of optimization problem is a nonsmooth nonconvex continuous functional constrained problem. To address this issue, our previous proposed constraint transcription method is applied to transform the continuous functional constraints to equality constraints. Then the nonsmooth problem is approximated by a sequence of smooth problems and solved via a hybrid global optimization method. The solutions obtained from these smooth problems converge to the global optimal solution of the original optimization problem. Hence, small transition bandwidth filters can be obtained

    Relationship between macroscopic physical properties and local distortions of low doping La{1-x}Ca{x}MnO3: an EXAFS study

    Full text link
    A temperature-dependent EXAFS investigation of La{1-x}Ca{x}MnO3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16-0.22. The samples are insulating for x = 0.16-0.2 and show a metal/insulator transition for x = 0.22. All samples are ferromagnetic although the saturation magnetization for the 16% Ca sample is only ~ 70% of the expected value at 0.4T. We find that the FMI samples have similar correlations between changes in the local Mn-O distortions and the magnetization as observed previously for the colossal magnetoresistance (CMR) samples (0.2 < x < 0.5) - except that the FMI samples never become fully magnetized. The data show that there are at least two distinct types of distortions. The initial distortions removed as the insulating sample becomes magnetized are small and provides direct evidence that roughly 50% of the Mn sites have a small distortion/site and are magnetized first. The large remaining Mn-O distortions at low T are attributed to a small fraction of Jahn-Teller-distorted Mn sites that are either antiferromagnetically ordered or unmagnetized. Thus the insulating samples are very similar to the behavior of the CMR samples up to the point at which the M/I transition occurs for the CMR materials. The lack of metallic conductivity for x <= 0.2, when 50% or more of the sample is magnetic, implies that there must be preferred magnetized Mn sites and that such sites do not percolate at these concentrations.Comment: 27 pages, 8 figures, to be submitted to Phys. Rev.

    Hilbert Space Representations of Probability Distributions

    Get PDF
    Many problems in unsupervised learning require the analysis of features of probability distributions. At the most fundamental level, we might wish to determine whether two distributions are the same, based on samples from each - this is known as the two-sample or homogeneity problem. We use kernel methods to address this problem, by mapping probability distributions to elements in a reproducing kernel Hilbert space (RKHS). Given a sufficiently rich RKHS, these representations are unique: thus comparing feature space representations allows us to compare distributions without ambiguity. Applications include testing whether cancer subtypes are distinguishable on the basis of DNA microarray data, and whether low frequency oscillations measured at an electrode in the cortex have a different distribution during a neural spike. A more difficult problem is to discover whether two random variables drawn from a joint distribution are independent. It turns out that any dependence between pairs of random variables can be encoded in a cross-covariance operator between appropriate RKHS representations of the variables, and we may test independence by looking at a norm of the operator. We demonstrate this independence test by establishing dependence between an English text and its French translation, as opposed to French text on the same topic but otherwise unrelated. Finally, we show that this operator norm is itself a difference in feature means
    corecore