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Optimal Design of Magnitude Responses of Rational
Infinite Impulse Response Filters

Charlotte Yuk-Fan Ho, Bingo Wing-Kuen Ling, Yan-Qun Liu,
Peter Kwong-Shun Tam, and Kok-Lay Teo

Abstract—This correspondence considers a design of magnitude re-
sponses of optimal rational infinite impulse response (IIR) filters. The
design problem is formulated as an optimization problem in which a total
weighted absolute error in the passband and stopband of the filters (the
error function reflects a ripple square magnitude) is minimized subject
to the specification on this weighted absolute error function defined
in the corresponding passband and stopband, as well as the stability
condition. Since the cost function is nonsmooth and nonconvex, while
the constraints are continuous, this kind of optimization problem is a
nonsmooth nonconvex continuous functional constrained problem. To
address this issue, our previous proposed constraint transcription method
is applied to transform the continuous functional constraints to equality
constraints. Then the nonsmooth problem is approximated by a sequence
of smooth problems and solved via a hybrid global optimization method.
The solutions obtained from these smooth problems converge to the
global optimal solution of the original optimization problem. Hence, small
transition bandwidth filters can be obtained.

Index Terms—Constraint transcription method, hybrid global optimiza-
tion method, rational infinite-impulse-response (IIR) filters.

I. INTRODUCTION

Although it is more difficult for rational infinite-impulse-response
(IIR) filters to have linear phase frequency responses when compared
with that for finite-impulse-response (FIR) filters, costs for imple-
menting the rational IIR filters are usually lower than that for the
FIR filters at given passband and stopband specifications. Hence,
rational IIR filters are preferred in many industrial and engineering
applications in which phase responses are not very important [1]–[3].
In particular, in a sigma–delta modulator, it consists of a discrete-time
filter. Since a sigma–delta modulator is operated in an oversampling
manner, a narrowband filter is required. As a result, a rational IIR filter
is preferred because the cost for employing an FIR filter is too high.
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Due to the quantization process, the phase information is seriously
corrupted by the quantizer. Hence, the phase information cannot be
exploited, and it is not very important for the design of a sigma–delta
modulator.

One of the most common methods for designing rational IIR fil-
ters is via eigenfilter approaches [4]–[8], in which optimal solutions
can be found by computing the eigenvalues of the error matrices. An-
other method is via a WISE approach [19]. An optimal solution can be
found by computing a gradient of the corresponding cost function. A
model-matching approach [17] was also proposed. This method is to
model rational IIR filters as FIR filters and then minimized the differ-
ence between a norm of these two classes of filters. However, since all
these methods [4]–[8], [17], [19] are based on formulating their design
problems as unconstrained optimization problems, the stability, as well
as the size of the ripple magnitudes in passbands and stopbands of the
filters, are not guaranteed. Moreover, they required phase information
for the desired filter responses. In some applications, such as the ap-
plications in sigma–delta modulators [1], phase responses are not very
important. Imposing extra phase information on desired filter responses
may cause degradation on filter performances.

In order to tackle parts of these issues, rational IIR filter design prob-
lems are formulated as constrained optimization problems subject to
various constraints. These optimization problems are solved via the
Gauss–Newton method [18]. However, this method replied on smooth
cost functions and is easy to trap at local minima because these op-
timization problems are not convex. In order to avoid computing the
gradients of cost functions, these design problems are formulated as
constrained iterative design problems [9]–[16]. Filter coefficients are
designed based on initialized denominator coefficients and the itera-
tion of the design process until the denominator coefficients converged.
Since these approaches required an initialization of denominator coef-
ficients, the global optimal solutions, as well as the convergence of the
iterative process, are not guaranteed.

There were some other methods proposed for designing rational IIR
filters, such as via halfband filters [20]. However, this approach is not
applied if filters are not halfband ones. Another method based on con-
trolling frequency response of filters continuously was proposed [21].
As it is a kind of adaptive filter design techniques, the filters are time
varying.

If only the magnitude response of rational IIR filters is designed, then
we can formulate the design problems as optimization problems. The
cost of the corresponding optimization problems can be defined as the
total weighted absolute error in the passbands and stopbands of the fil-
ters, in which the error function reflects the ripple square magnitudes,
subject to constraints based on the specification on this weighted ab-
solute error function in the corresponding passbands and stopbands, as
well as to a stability condition of the filters. However, this kind of opti-
mization problem is difficult to solve because it involves a nonsmooth
nonconvex cost and continuous functional constraints.

To solve the optimization problems with continuous functional con-
straints, one may sample these continuous functional constraints and
convert to finite discrete constraints [14], [22]. However, it is not guar-
anteed that solutions obtained satisfy the original continuous functional
constraints. Although the difference between the exact upper bounds
of discretized constraint functions and that of the corresponding con-
tinuous functional constraint functions decrease as the number of grid
points increases, the computational complexity increases. To find the
global optimal solution of nonconvex problems, one may apply the
bridging method [23]. However, this method is applied only for one-di-
mensional optimization problems.

Fig. 1. Plot of E(0) against different denominator coefficients. It can be seen
that E(0) is not differentiable with respect to the denominator coefficients.

In this correspondence, a magnitude design of rational IIR filters is
formulated as a nonsmooth nonconvex optimization problem with con-
tinuous functional constraints. Our previous proposed constraint tran-
scription method [24] is applied to transform these continuous func-
tional constraints to equality constraints. The global optimal solution
can be obtained via the hybrid global optimization method [25]. The
obtained numerical experiments show that very small transition band-
width filters can be obtained.

The outline of this correspondence is as follows. The problem formu-
lation is presented in Section II. The numerical experiments are shown
in Section III. Finally, a conclusion is summarized in Section IV.

II. PROBLEM FORMULATION

Consider a general rational IIR filter with frequency response

H(!) =
e�jD!

M

m=0
bme

�jm!

1 + N

n=1
ane�jn!

(1)

where j � p�1; D relates to the delay of the filter, M and N are,
respectively, the number of nonzero roots of the polynomials of e�j!

in the numerator and denominator, bm for m = 0; 1; . . . ;M and an
for n = 1; 2; . . . ; N are, respectively, the filter coefficients in the nu-
merator and denominator. Solving the optimal filter design problem
is equivalent to determine the values of an for n = 1; 2; . . . ; N and
bm for m = 0; 1; . . . ;M . It is worth noting that D 2 < is not im-
portant for the magnitude design problem, where < denotes the set of
all real numbers. Here, we only consider filters with real coefficients,
which are the most usual cases in most applications [1]–[3]. Therefore,
an; bm;2 < for n = 1; 2; . . . ; N and m = 0; 1; . . . ;M . It is worth
noting that both the causal and noncausal filters can be designed via the
following approach. That means M can be greater than, equal, or less
than N , D can be positive, zero or negative numbers, and not neces-
sarily an integer.

Let the desired magnitude response of H(!) be ~H(!), where
~H(!) � 0; 8! 2 [��; �]. We want to achieve

e�jD!
M

m=0
bme

�jm!

1 + N

n=1
ane�jn!

2

� ( ~H(!))2 (2)
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where j � j denotes the modulus of the corresponding complex function.
There are many ways to formulate an error function. For example, we
can formulate an error function as follows:

E(!)� e
�jD!

M

m=0

bme
�jm! � ~H(!) 1 +

N

n=1

ane
�jn!

2

: (3)

However, this function is not differentiable with respect to the
filter coefficients. For example, consider a second-order rational
IIR filter with D = 0; b0 = 2:816335701763035 � 10�3; b1 =
1:877557134508662� 10�3 and b2 = 2:816335701763063� 10�3.
The plot of E(!) against (a1; a2) at ! = 0 is shown in Fig. 1. It
can be seen from the figure that E(0) is not differentiable along the
line a1 + a2 + 1 = 0. Besides, since this error function consists of
taking the modulus operators inside the square operator, there does
not exist any method for solving this kind of nonsmooth problem.
Although there are some alternative methods to define the error
function so that the error function is smooth, for example, E(!) �
(je�jD! M

m=0 bme
�jm!j2 � ~H(!)j1+ N

n=1 ane
�jn!j2)2, the

error function is fourth order, and many local minima and maxima
would be occurred. In order to tackle this issue, we redefine E(!) as
follows:

E(!) � e
�jD!

M

m=0

bme
�jm!

2

� ( ~H(!))2 1 +

N

n=1

ane
�jn!

2

:

(4)

In this case, E(!) is differentiable with respect to the filter coeffi-
cients. Let the filter coefficients in the numerator and denominator be,
respectively,

xn � [b0; b1; . . . ; bM ]T (5)

and

xd � [a1; a2; . . . ; aN ]
T (6)

where the superscript T denotes the transpose. Define

���n(!) � [1; e�j!; . . . ; e�jM!]T (7)

and

���d(!) � [e�j!; e�j2!; . . . ; e�jN!]T (8)

then

E(!) = (���n(!))
T
xn

2

� ( ~H(!))2 1 + (���d(!))
T
xd

2

: (9)

Denote the passband and stopband of the filter be, respectively, BP
and BS . In order to design a rational IIR filter having good frequency
selectivity, the total ripple energy in both the passband and stopband
of the filter should be minimized. Hence, we define a cost function as
follows:

~J(xn;xd) �
B [B

W (!)jE(!)jd! (10)

where W (!) > 0; 8! 2 BP [ BS is a weighting function. This
cost function can represent the total weighted absolute ripple square

magnitude in the passband and stopband of the filter because jE(!)j
represents the absolute ripple square magnitude. It is worth noting that
jE(!)j is still a nonsmooth function. However, since the modulus op-
erator is taken outside a smooth function, this kind of optimization
problem can be solved via the constraint transcription method [24] and
will be discussed below.

Although the cost function can be used to minimize the total
weighted absolute ripple square magnitude in the passband and stop-
band of the filter, there may have a very serious overshoot. Hence, a
specification based on the weighted absolute ripple square magnitude
is defined as follows:

~W (!)jE(!)j � ~�(!); 8! 2 BP [BS (11a)

where ~W (!) > 0; 8! 2 BP [BS is a weighting function and ~�(!) >
0; 8! 2 BP [ BS relates to the allowable weighted absolute ripple
square magnitude in both the passband and stopband of the filter. This
constraint is equivalent to

~W (!)E(!)� ~�(!); 8! 2 BP [BS (11b)

and

�~�(!) � ~W (!)E(!); 8! 2 BP [BS : (11c)

In order to guarantee that the designed filter is stable, we need to
satisfy the following condition:

Re 1 + (���d(!))
T
xd < 0; 8! 2 [��; �]: (12)

Hence, the rational IIR filter design problem can be formulated as
the following optimization problem.

Problem ~P:

min
(x ;x )

~J(xn;xd) �
B [B

W (!)jE(!)jd! (13a)

subject to ~g1(xn;xd; !) � ~W (!)E(!)� ~�(!) � 0;

8! 2 BP [BS (13b)

~g2(xn;xd; !) � � ~W (!)E(!)� ~�(!) � 0;

8! 2 BP [BS (13c)

~g3(xd; !) � Re 1 + (���d(!))
T
xd � 0;

8! 2 [��; �]: (13d)

It is worth noting that problem ~P consists of a nonsmooth nonconvex
cost and continuous functional constraints. This kind of optimization
problem is difficult to solve. In order to tackle this issue, our proposed
constraint transcription method [24] is applied to convert these con-
tinuous functional constraints to equality constraints and discussed as
follows. Since

maxf~g1(xn;xd; !); 0g

=
0; ~g1(xn;xd; !) � 0

positive value; ~g1(xn;xd; !) > 0
(14)

by defining

ĝ1(xn; xd) �
B [B

(maxf~g1(xn;xd; !); 0g)
2
d! (15)

Authorized licensed use limited to: RMIT University. Downloaded on November 23, 2008 at 20:32 from IEEE Xplore.  Restrictions apply.



4042 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 10, OCTOBER 2006

then we have

ĝ1(xn;xd)

=
0; 8! 2 BP [BS ; ~g1(xn;xd; !) � 0

positive value; 9! 2 BP [BS ; ~g1(xn;xd; !) > 0
:

(16)

Hence, the satisfaction of the constraint defined by 8! 2
BP [ BS ~g1(xn; xd; !) � 0 is equivalent to the equality con-
straint defined by ĝ1(xn;xd) = 0. Since

(maxf~g1(xn;xd; !); 0g)
2

=
0; ~g1(xn;xd; !) � 0

(~g1(xn;xd; !))
2; ~g1(xn;xd; !) > 0

(17)

r(x ;x )(maxf~g1(xn; xd; !);0g)
2

=
0; ~g1(xn; xd; !) < 0

2~g1(xn;xd; !)r(x ;x )~g1(xn;xd; !); ~g1(xn; xd; !) > 0
:

(18)

As 2~g1(xn;xd; !)r(x ;x )~g1(xn;xd; !) = 0 when
~g1(xn;xd; !) = 0, so r(x ;x )(maxf~g1(xn;xd; !); 0g)

2

is continuous at ~g1(xn; xd; !) = 0. Moreover, since
2maxf~g1(xn;xd; !); 0gr(x ;x )~g1(xn; xd; !) = 0

when ~g1(xn;xd; !) < 0 and 2maxf~g1(xn;xd; !); 0g
� r(x ;x )~g1(xn;xd; !) = 2~g1(xn;xd; !)r(x ;x )~g1(xn;xd; !)
when ~g1(xn;xd; !) > 0, so we have

r(x ;x )(maxf~g1(xn;xd; !); 0g)
2

= 2maxf~g1(xn;xd; !); 0gr(x ;x )~g1(xn;xd; !): (19)

As a result, we have

r(x ;x )ĝ1(xn;xd)

= 2
B [B

maxf~g1(xn;xd; !); 0gr(x ;x )~g1(xn;xd; !)d!:

(20)

Similarly, by defining

ĝ2(xn;xd) �
B [B

(maxf~g2(xn;xd; !); 0g)
2d!

(21)

and

ĝ3(xd) �
[��;�]

(maxf~g3(xd; !); 0g)
2d! (22)

we have

r(x ;x )ĝ2(xn; xd)

= 2
B [B

maxf~g2(xn;xd; !); 0g

�r(x ;x )~g2(xn;xd; !)d!

(23)

and

rx ĝ3(xd)=2
[��;�]

maxf~g3(xd; !);0grx ~g3(xd; !)d!:

(24)

As ĝ1(xn;xd); ĝ2(xn;xd); and ĝ3(xd) are continuously differen-
tiable with respect to (xn;xd) and xd, respectively, the optimization

problem ~P is equivalent to the following optimization problem,
denoted as problem P.

Problem (P):

min
(x ;x )

~J(xn;xd) �
B [B

W (!)jE(!)jd!

(25a)

subject to ĝ1(xn;xd) = 0 (25b)

ĝ2(xn;xd) = 0 (25c)

ĝ3(xd) = 0: (25d)

However, problem P is still a nonsmooth nonconvex problem,
where the nonsmooth function appears in the cost. Thus, standard
optimization software packages, such as Matlab Optimization toolbox,
in theory, cannot be applied directly. To overcome this difficulty, the
nonsmooth absolute function jE(!)j8! 2 BP [BS is handled in the
following manner. 8! 2 BP [BS and " > 0, consider the following
function:

E"(!) �
jE(!)j jE(!)j � "

2
(E(!))

"
+ "

4
jE(!)j < "

2

: (26)

Clearly, the function E"(!) possesses the following properties:
i) 8! 2 BP [ BS ; E"(!)is continuously differentiable with

respect to (xn;xd).
ii) 8(xn;xd) and 8! 2 BP [ BS ; E"(!) � jE(!)j.

iii) 8(xn;xd) and 8! 2 BP [BS ; jE"(!)� jE(!)jj � ("=4).
iv) 8(xn;xd); (x�n;x

�

d) minimizes jE(!)j if and only if it mini-
mizes E"(!).

By virtue of these properties, E"(!) is an ideal approximation of
the nonsmooth function jE(!)j. By replacing E"(!) for jE(!)j in the
cost function (25a), we obtain

J"(xn;xd) �
B [B

W (!)E"(!)d! (27)

where the function J"(xn;xd) is now continuously differentiable with
respect to (xn;xd); 8" > 0. Hence, we can approximate the non-
smooth optimization problem P by a smooth optimization problem,
where the cost function (27) is to be minimized subject to the equality
constraints defined in (25b), (25c), and (25d). Let this optimization
problem be referred to as problem Q" as follows.

Problem (Q"):

min
(x ;x )

J"(xn;xd) �
B [B

W (!)E"(!)d!

(28a)

subject to ĝ1(xn; xd) = 0 (28b)

ĝ2(xn; xd) = 0 (28c)

ĝ3(xd) = 0: (28d)

8" > 0; let (x�";n;x
�

";d) be an optimal solution to the approximate
problem Q". Furthermore, let (x�n;x

�

d) be an optimal solution to the
original problemP. Then, there are two questions to be answered. First,
how much does J"(x�";n;x

�

";d) differ from ~J(x�n;x
�

d)? Second, what
is the relationship between f(x�";n;x

�

";d)g and f(x�n;x
�

d)g? To address
the first question, we have the following theorem.

Theorem 1: Let (x�";n;x
�

";d) and (x�n;x
�

d) be, respectively, op-
timal solutions to problems Q" and P. Then 0 � J"(x

�

";n;x
�

";d) �
~J(x�n;x

�

d) �
"

4 B [B
W (!)d!.
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Fig. 2. Magnitude responses of various filters. (a) Filter designed via the itera-
tive approach [9]. (b) Filter designed via an elliptic filter. (c) Filter designed via
our proposed approach. All the passband and stopband ripple magnitudes are
the same.

Proof: By virtue of property ii) of the function E"(!), we have

J"(x
�

";n;x
�

";d) � ~J(x�";n;x
�

";d) � min
(x ;x )

~J(xn;xd)

= ~J(x�n;x
�

d): (29)

Hence

J"(x
�

";n;x
�

";d)� ~J(x�n;x
�

d) � 0: (30)

Next, from property iii) of the function E"(!), we have

0 � J"(x
�

n;x
�

d)� ~J(x�n;x
�

d) �
"

4 B [B

W (!)d!: (31)

However

J"(x
�

";n;x
�

";d) � J"(x
�

n;x
�

d) (32)

so we have

J"(x
�

";n;x
�

";d)� ~J(x�n;x
�

d) �
"

4 B [B

W (!)d!: (33)

Hence, this completes the proof.
To address the second question, we have the following theorem:
Theorem 2: Let f(x�";n;x

�

";d)g be a sequence of optimal solutions
to the corresponding sequence of approximate problems fQ"g. Then
an accumulation point exists and it is an optimal solution to the original
problem P.

Proof: Since J"(xn;xd) is continuous with respect to both
(xn;xd) and "; f(x�";n;x

�

";d)g is a convergent sequence and
there exists an accumulation point (�xn; �xd) and a subsequence
of the sequence f(x�";n;x

�

";d)g, which is again denoted by the
original sequence, such that k(x�";n;x

�

";d)� (�xn; �xd)k ! 0 as

Fig. 3. Zoom of the magnitude responses in the passband. (a) Filter designed
via the iterative approach [9]. (b) Filter designed via an elliptic filter. (c) Filter
designed via our proposed approach. All the passband ripple magnitudes are the
same.

Fig. 4. Zoom of the magnitude responses in the stopband. (a) Filter designed
via the iterative approach [9]. (b) Filter designed via an elliptic filter. (c) Filter
designed via our proposed approach. All the stopband ripple magnitudes are the
same.

" ! 0, where k � k denotes the Euclidean norm. By Theorem 1, as
0 � J"(x

�

";n;x
�

";d) � ~J(x�n;x
�

d) �
"

4 B [B
W (!)d!, we have

J"(x
�

";n;x
�

";d) ! ~J(x�n;x
�

d) as " ! 0. Hence, this completes the
proof.

Based on these two theorems, problem ~P can be solved via solving
a sequence of approximate problems fQ"g by an iterative technique
stated in [24] with decreasing value of " and the algorithm is summa-
rized as follows:

Algorithm 1:
Step 1) Initialize "1 > 0 and k = 1.
Step 2) Solve problem Q" by hybrid global optimization method

discussed in [25]. Denote the solution by (x�" ;n;x
�

" ;d).
Step 3) Set "k+1 =

"

L
, where L > 1 is a prespecified number.

Step 4) If k(x�" ;n;x
�

" ;d)� (x�" ;n;x
�

" ;d)k � �, where
� > 0 is a prescribed small number depending on the
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Fig. 5. Zoom of the magnitude responses in the transition band. (a) Filter de-
signed via the iterative approach [9]. The transition bandwidth of the filter is
0.2756. (b) Filter designed via an elliptic filter. The transition bandwidth of the
filter is 1:382�10 . (c) Filter designed via our proposed approach. The tran-
sition bandwidth of the filter is 6:258� 10 .

accuracy desired, then stop. Otherwise, set k = k + 1 and
go to Step 1).

In Algorithm 1, we can see that "k ! 0 as k ! +1 becauseL > 1.
Hence, according to Theorem 2, we can see that the solution obtained
f(x�";n;x

�

";d)g converges to the global optimal solution of problemP.
There are three parameters in the Algorithm 1, namely, "1; L and �.

"1 determines how close the approximate problem Q" and the orig-
inal problem P. The smaller the value of "1, the more close will be
the problem Q" to problem P, and hence the less number of itera-
tions of Algorithm 1 is required. However, the cost function becomes
less smooth.L also determines the number of iterations required. Simi-
larly, the larger the value ofL, the less number of iterations is required,
but the cost function becomes less smooth even for small values of k.
Practically, we find that if "1 � 10�3 and L � 10, then the number of
iterations required and the cost function will be, respectively, small and
smooth enough for most optimization problems [24]. � controls the ac-
ceptable precision of the obtained solution. The smaller the value of �,
the more accurate of the solution is. However, the number of iterations
required increases. Due to practical reasons, such as finite number of
bits for representing filter coefficients, if � � 10�6, then the obtained
solution will be good for most applications [1]–[3].

It is worth noting that problem Q" is a nonconvex problem, so
global optimal solution will not be guaranteed if it is solved via
the existing gradient approach method [18]. In order to solve this
difficulty, the hybrid global optimization method is applied [25] and
is summarized as follows: The hybrid global optimization method
consists of two basic components: local optimizers and feasible
point finders. Given a feasible point, local optimizers will quickly
produce a local optimal solution in the neighborhood of the feasible
point. For the feasible point finders, first, choose an initial point
(x�" ;n;x

�

" ;d) from the feasible set of the problem Q" and start the
local optimizer. Assume that the local optimizer has produced the
local optimal solution of J" (xn;xd) near (x�" ;n;x

�

" ;d). Denote
the local optimal solution and the corresponding local optimal value
as (x�" ;n;x

�

" ;d) and J" (x�" ;n;x
�

" ;d). Then a new optimization
problem with the same cost function but an additional constraint

Fig. 6. Phase responses of various filters. (a) Filter designed via the iterative
approach [9]. (b) Filter designed via an elliptic filter. (c) Filter designed via our
proposed approach. The phase response of the filter designed using the iterative
approach [9] is approximately linear, while those of via an elliptic filter and our
design method are nonlinear.

Fig. 7. Pole-zero plots of various filters. (a) Filter designed via the iterative
approach [9]. (b) Filter designed via an elliptic filter. (c) Filter designed via our
proposed approach. The poles and zeros of the filter designed using the iterative
approach [9] are spread over a wide region in the complex plane, while those of
the filters designed via an elliptic filter and our design method are located in a
small region in the complex plane.

J"(xn;xd) � J" (x�" ;n;x
�

" ;d) < 0 is added. Since the additional
constraint is imposed in the optimization problem, the feasible set
of this new optimization problem is smaller than that of the original
optimization problem. Denote the new feasible set as l

j=0
Sj . If

the new optimization problem has no solution, then (x�" ;n;x
�

" ;d)

is taken as the global optimal solution of the original optimization
problem. Otherwise, select Sj from l

j=0
Sj and use the gradient

and Newton method to find a feasible point in Sj and restart the local
optimal solution with this new initial feasible point. These procedures
are repeated until a global optimal solution is obtained. In this hybrid
global optimization algorithm, we can see that the feasible point
finders serve two purposes: i) guarantee a solution that is better than
the one obtained in the previous iteration; and most importantly and
ii) if feasible point finders find no solution, then the global optimal
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TABLE I
FILTER COEFFICIENTS OF VARIOUS FILTERS

solution will be found. Therefore, the hybrid global optimization
method can always correctly find the global optimal solution. For the
details, we recommend the readers to study [25].

Although the hybrid global optimization method [25] guarantees the
global optimal solution, the rate of convergence of the algorithm de-
pends on the initial choice of (x�" ;n;x

�

" ;d). In order to have a fast
rate of convergence, (x�" ;n;x

�

" ;d) should be selected as close to the
global optimal solution. For the rational IIR filter design problems, the
solutions obtained using the elliptic filter design method may be a good
choice of this initial guess because the solution obtained by the elliptic
filter design method is a suboptimal solution.

III. NUMERICAL EXPERIMENTS

In this correspondence, a unit dc gain highpass halfband filter, that

is ~H(!) =
1 ! 2 BP

0 ! 2 Bs

, where BP = [��;�(�=2)��] [

[(�=2) + �; �] and BS = [�(�=2) + �; (�=2)��], in which 2�

denotes the transition bandwidth of the filter, is designed for the illus-
tration of the effectiveness of the proposed method. Halfband filters
with unit dc gain are selected for illustration because they are found
in many engineering applications, such as in wavelet applications. For
other filters with different dc gains, such as lowpass filters, bandpass
filters, band reject filters, notch filters, highpass filters with other
passbands and stopbands, the design method can be applied directly.

To evaluate the effectiveness of the proposed method, our result is
compared with the one obtained using the iterative approach [9] and
that using an elliptic filter. These two design methods are chosen for
comparisons because that using the iterative approach [9] would be of
great value for the readers working in this field, while that using an el-
liptic filter because the design objectives are the same. For the iterative
design approach, it was reported in [9] that the magnitude response of
the filter in the passband and stopband is approximately bounded by,
respectively, 0.1406 dB and �27.8974 dB, if the filter order is 14. The
corresponding magnitude response is shown in Fig. 2(a), the zoom in
the passband, stopband and the transition band are shown in, respec-
tively, Figs. 3(a), 4(a), and 5(a). It can be seen from the figure that the
transition bandwidth is 0.2756. To compare this result with that using

an elliptic filter, we use the Matlab function “ellip” to implement the
filter and set the filter order, as well as the passband and stopband speci-
fications same as that reported in [9]. The corresponding magnitude re-
sponse is shown in Fig. 2(b), while the zoom in the passband, stopband,
and the transition band are shown in, respectively, Figs. 3(b), 4(b), and
5(b). It can be seen from the figure that the transition bandwidth of the
filter is 1:382 � 10�3. For our design, we set both W (!) = 1 and
~W (!) = 1; 8! 2 BP [ BS for simplicity reasons. In fact, other

positive weighting functions can be applied directly. For the param-
eters in the algorithm, we choose "1 = 10�3L = 10; � = 10�6,
and (x�" ;n;x

�

" ;d) as the elliptic filter coefficients as discussed in Sec-
tion II. After running three iterations, the optimization algorithm termi-
nates because the stopping criterion satisfies. The magnitude response
of the filter is shown in Fig. 2(c), while the zoom in the passband, stop-
band, and the transition band are shown in, respectively, Figs. 3(c), 4(c),
and 5(c). The phase responses and the pole-zero plots of these designed
filters are shown in, respectively, Figs. 6 and 7, while the filter coeffi-
cients are listed in Table I. It can be checked that the transition band-
width of our designed filter is 6:258 � 10�4, which is 0.2271% of
that using the iterative approach and 45.2822% of that using an elliptic
filter. Our result performs much better than that using the iterative de-
sign approach [9] because this design approach requires a desired phase
response and this information is necessary and cannot be removed from
the design procedure. By a imposing an extra phase response on the
design desired, the magnitude response will be the tradeoff. Our result
also performs better than that using an elliptic filter because the one
obtained using an elliptic filter is a local optimal solution, while our
result is a global optimal solution.

It is worth noting that our proposed design method can be applied
to a strong specification if a solution exists. Since there is a tradeoff
between a filter length and a reduction on the passband and stopband
ripple magnitudes, there does not exist any design that gives a filter
with very short filter length but very large reduction on the passband
and stopband ripple magnitudes. If there exists a stable filter such that
it satisfies the specifications on the passband and stopband ripple mag-
nitudes at a relatively short filter length, then a global optimal solution
for the optimization problem exists. Since our proposed design method
guarantees to obtain the global optimal solution, our proposed design
method works properly under a strong specification if a solution exists.
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In order to test the rate of convergence of the algorithm, four dif-
ferent initial guesses of (x�" ;n;x

�

" ;d) are used. These four initial
guesses give the same global optimal solution. The design time for
choosing (x�" ;n;x

�

" ;d) as the elliptic filter coefficients is 2 seconds,
that as the Chebyshev Type I filter coefficients is 10 min, that as the
Chebyshev Type II filter coefficients is 15 min, and that as the one
obtained using the iterative approach [9] is 1.5 h, where all numerical
experiments are running using a PC with Pentium 1.2-GHz CPU and
256-MB DDRAM. From these results, we can conclude that the re-
quired design time will be shorter if the initial guess is closer to the
global optimal solution.

IV. CONCLUSION

The main contribution of this correspondence is to formulate an op-
timum rational IIR filter design problem as a nonsmooth nonconvex
optimization problem subject to continuous functional constraints. Our
previous proposed constraint transcription method is applied to trans-
form the continuous functional constraints to equality constraints. A
hybrid global optimization method is applied to find the global op-
timal solution. According to our numerical experiments, small transi-
tion bandwidth filters are obtained.
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