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Overview

• The two sample problem: are samples {x1, . . . , xm} and {y1, . . . , yn}

generated from the same distribution?

• Kernel independence testing: given a sample of m pairs

{(x1, y1), . . . , (xm, ym)}, are the random variables x and y independent?



Kernels, feature maps
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• Hilbert space of functions f ∈ F from X to R

• RKHS: evaluation operator δx : x→ R continuous
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A very short introduction to kernels

• Hilbert space of functions f ∈ F from X to R

• RKHS: evaluation operator δx : x→ R continuous

• Riesz: Unique representer of evaluation k(x, ·) ∈ F :

f(x) = 〈f, k(x, ·)〉F

– k(x, ·) feature map

– k : X 7→ R is kernel function

• Inner product between two feature maps:

〈k(x1, ·), k(x2, ·)〉F = k(x1, x2)



A Kernel Method for the Two Sample Problem
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• Given:

– m samples x := {x1, . . . , xm} drawn i.i.d. from P

– samples y drawn from Q

• Determine: Are P and Q different?

• Applications:

– Microarray data aggregation

– Speaker/author identification

– Schema matching

• Where is our test useful?

– High dimensionality

– Low sample size

– Structured data (strings and graphs): currently the only method



Overview (two-sample problem)

• How to detect P 6= Q?

– Distance between means in space of features

– Function revealing differences in distributions

– Same thing: the MMD [Gretton et al., 2007, Borgwardt et al., 2006]



Overview (two-sample problem)

• How to detect P 6= Q?

– Distance between means in space of features

– Function revealing differences in distributions

– Same thing: the MMD [Gretton et al., 2007, Borgwardt et al., 2006]

• Hypothesis test using MMD

– Asymptotic distribution of MMD

– Large deviation bounds



Overview (two-sample problem)

• How to detect P 6= Q?

– Distance between means in space of features

– Function revealing differences in distributions

– Same thing: the MMD [Gretton et al., 2007, Borgwardt et al., 2006]

• Hypothesis test using MMD

– Asymptotic distribution of MMD

– Large deviation bounds

• Experiments



Mean discrepancy (1)

• Simple example: 2 Gaussians with different means

• Answer: t-test
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Mean discrepancy (2)

• Two Gaussians with same means, different variance

• Idea: look at difference in means of features of the RVs

• In Gaussian case: second order features of form x2
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Mean discrepancy (2)

• Two Gaussians with same means, different variance

• Idea: look at difference in means of features of the RVs

• In Gaussian case: second order features of form x2
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Mean discrepancy (3)

• Gaussian and Laplace distributions

• Same mean and same variance

• Difference in means using higher order features
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Function revealing difference in distributions (1)

• Idea: avoid density estimation when testing P 6= Q

[Fortet and Mourier, 1953]

D(P,Q; F ) := sup
f∈F

[EPf(x) − EQf(y)] .
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Function revealing difference in distributions (1)

• Idea: avoid density estimation when testing P 6= Q

[Fortet and Mourier, 1953]

D(P,Q; F ) := sup
f∈F

[EPf(x) − EQf(y)] .

• D(P,Q; F ) = 0 iff P = Q, when F =bounded continuous

functions [Dudley, 2002]

• D(P,Q; F ) = 0 iff P = Q when F =the unit ball in a

universal RKHS F [via Steinwart, 2001]

– Examples: Gaussian, Laplace [see also Fukumizu et al., 2004]



Function revealing difference in distributions (2)

• Gauss vs Laplace revisited
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• The (kernel) MMD:

MMD(P,Q;F )

=

(
sup
f∈F

[EPf(x) − EQf(y)]

)2

=

(
sup
f∈F

〈f, µx − µy〉F

)2

= ‖µx − µy‖
2
F

= 〈µx − µy, µx − µy〉F

= EP,P′k(x, x′) + EQ,Q′k(y, y′) − 2EP,Qk(x, y)

• x
′ is a R.V.

independent of x

with distribution

P

• y
′ is a R.V. inde-

pendent of y with

distribution Q.

• Kernel between measures [Hein and Bousquet, 2005]

K(P,Q) = EP,Qk(x, y)
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Statistical test using MMD (1)

• Two hypotheses:

– H0: null hypothesis (P = Q)

– H1: alternative hypothesis (P 6= Q)

• Observe samples x := {x1, . . . , xm} from P and y from Q

• If empirical MMD(x,y;F ) is

– “far from zero”: reject H0

– “close to zero”: accept H0

• How good is a test?

– Type I error: We reject H0 although it is true

– Type II error: We accept H0 although it is false

• Good test has a low type II error for user-defined Type I error
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Statistical test using MMD (2)

• “far from zero” vs “close to zero” - threshold?

• One answer: asymptotic distribution of MMD(x, y; F )

• An unbiased empirical estimate (quadratic cost):

MMD(x,y; F ) = 1
m(m−1)

∑

i6=j

k(xi, xj) − k(xi, yj) − k(yi, xj) + k(yi, yj)︸ ︷︷ ︸
h((xi,yi),(xj ,yj))

• When P 6= Q, asymptotically normal [Hoeffding, 1948, Serfling, 1980]

• Expression for the variance: zi := (xi, yi)

σ2
u =

22

m

(
Ez

[
(Ez′h(z, z′))2

]
− [Ez,z′(h(z, z′))]

2
)

+ O(m−2)



Statistical test using MMD (3)

• Example: laplace distributions with different variance
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Statistical test using MMD (4)

• When P = Q, U-statistic degenerate: Ez′ [h(z, z
′)] = 0 [Anderson et al., 1994]

• Distribution is

mMMD(x,y;F ) ∼
∞∑

l=1

λl

[
z2
l − 2

]

• where

– zl ∼ N (0, 2) i.i.d

–
∫
X
k̃(x, x′)︸ ︷︷ ︸
centred

ψi(x)dPx(x) = λiψi(x
′)
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• When P = Q, U-statistic degenerate: Ez′ [h(z, z
′)] = 0 [Anderson et al., 1994]

• Distribution is

mMMD(x,y;F ) ∼
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[
z2
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]

• where
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Experiments

• Small sample size: Pearson more accurate than bootstrap

• Large sample size: bootstrap faster

• Cancer subtype (m = 25, 2118 dimensions):

– For Pearson, Type I 3.5%, Type II 0%

– For bootstrap, Type I 0.9%, Type II 0%

• Neural spikes (m = 1000, 100 dimensions):

– For Pearson, Type I 4.8%, Type II 3.4%

– For bootstrap, Type I 5.4%, Type II 3.3%

• Further experiments: comparison with t-test, Friedman-Rafsky

tests [Friedman and Rafsky, 1979], Biau-Györfi test [Biau and Gyorfi, 2005], and

Hall-Tajvidi test [Hall and Tajvidi, 2002].



Conclusions (two-sample problem)

• The MMD: distance between means in feature spaces

• When feature spaces universal RKHSs, MMD = 0 iff

P = Q

• Statistical test of whether P 6= Q using asymptotic

distribution:

– Pearson approximation for low sample size

– Bootstrap for large sample size

• Useful in high dimensions and for structured data
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Kernel dependence measures

• Independence testing

– Given: m samples z := {(x1, y1), . . . , (xm, ym)} from P

– Determine: Does P = PxPy?

• Kernel dependence measures

– Zero only at independence

– Take into account high order moments

– Make “sensible” assumptions about smoothness

• Covariance operators in spaces of features

– Spectral norm (COCO) [Gretton et al., 2005c,d]

– Hilbert-Schmidt norm (HSIC) [Gretton et al., 2005a]
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Function revealing dependence (1)

• Idea: avoid density estimation when testing P = PxPy [Rényi, 1959]

COCO(P;F ,G) := sup
f∈F ,g∈G

(Ex,y[f(x)g(y)] − Ex[f(x)]Ey[g(y)])

• COCO(P;F,G) = 0 iff x, y independent, when F and G are respective

unit balls in universal RKHSs F and G [via Steinwart, 2001]

– Examples: Gaussian, Laplace [see also Bach and Jordan, 2002]

In geometric terms:

• Covariance operator: Cxy : G → F such that

〈f, Cxyg〉F = Ex,y[f(x)g(y)] − Ex[f(x)]Ey[g(y)]

• COCO is the spectral norm of Cxy [Gretton et al., 2005c,d]:

COCO(P;F,G) := ‖Cxy‖S



Function revealing dependence (2)

• Ring-shaped density, correlation approx. zero [example from

Fukumizu, Bach, and Gretton, 2005]
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Function revealing dependence (2)

• Ring-shaped density, correlation approx. zero [example from

Fukumizu, Bach, and Gretton, 2005]
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Function revealing dependence (3)

• Empirical COCO(z;F,G) largest eigenvalue of
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Function revealing dependence (4)

• Can we do better?

• A second example with zero correlation
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Hilbert-Schmidt Independence Criterion

• Given γi := COCOi(z;F,G), define Hilbert-Schmidt Independence

Criterion (HSIC) [Gretton et al., 2005b]:

HSIC(z;F,G) :=
m∑

i=1

γ2
i



Hilbert-Schmidt Independence Criterion

• Given γi := COCOi(z;F,G), define Hilbert-Schmidt Independence

Criterion (HSIC) [Gretton et al., 2005b]:

HSIC(z;F,G) :=
m∑

i=1

γ2
i

• In limit of infinite samples:

HSIC(P;F,G) := ‖Cxy‖
2
HS

= 〈Cxy, Cxy〉HS

= Ex,x′,y,y′ [k(x, x
′)l(y, y′)] + Ex,x′ [k(x, x

′)]Ey,y′ [l(y, y
′)]

− 2Ex,y

[
Ex′ [k(x, x

′)]Ey′ [l(y, y
′)]
]

• x
′ an independent copy of x, y

′ a copy of y



Link between HSIC and MMD (1)

• Define the product space F × G with kernel

〈
Φ(x, y),Φ(x′, y′)

〉
= K((x, y), (x′, y′)) = k(x, x′)l(y, y′)



Link between HSIC and MMD (1)

• Define the product space F × G with kernel

〈
Φ(x, y),Φ(x′, y′)

〉
= K((x, y), (x′, y′)) = k(x, x′)l(y, y′)

• Define the mean elements

〈µxy,Φ(x, y)〉 := Ex′,y′

〈
Φ(x′, y′),Φ(x, y)

〉
= Ex′,y′k(x, x′)l(y, y′)

and

〈µx⊥⊥y,Φ(x, y)〉 := Ex′,y′′

〈
Φ(x′, y′′),Φ(x, y)

〉
= Ex′k(x, x′)Ey′ l(y, y′)



Link between HSIC and MMD (1)

• Define the product space F × G with kernel

〈
Φ(x, y),Φ(x′, y′)

〉
= K((x, y), (x′, y′)) = k(x, x′)l(y, y′)

• Define the mean elements

〈µxy,Φ(x, y)〉 := Ex′,y′

〈
Φ(x′, y′),Φ(x, y)

〉
= Ex′,y′k(x, x′)l(y, y′)

and

〈µx⊥⊥y,Φ(x, y)〉 := Ex′,y′′

〈
Φ(x′, y′′),Φ(x, y)

〉
= Ex′k(x, x′)Ey′ l(y, y′)

• The MMD between these two mean elements is

MMD(P,PxPy, F ×G) = ‖µxy − µx⊥⊥y‖
2
F×G

= 〈µxy − µx⊥⊥y, µxy − µx⊥⊥y〉

= HSIC(P, F,G)



Link between HSIC and MMD (2)

• Witness function for HSIC
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Independence test: verifying ICA and ISA

• HSICp: null distribution via sampling

• HSICg: null distribution via moment matching

• Compare with contingency table test (PD) [Read and Cressie, 1988]
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Independence test: verifying ICA and ISA

• HSICp: null distribution via sampling

• HSICg: null distribution via moment matching

• Compare with contingency table test (PD) [Read and Cressie, 1988]
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Independence test: verifying ICA and ISA

• HSICp: null distribution via sampling

• HSICg: null distribution via moment matching

• Compare with contingency table test (PD) [Read and Cressie, 1988]
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Other applications of HSIC

• Feature selection [Song et al., 2007c,a]

• Clustering [Song et al., 2007b]



Conclusions (dependence measures)

• COCO and HSIC: norms of covariance operator

between feature spaces

• When feature spaces universal RKHSs,

COCO = HSIC = 0 iff P = PxPy

• Statistical test possible using asymptotic distribution

• Independent component analysis

– high accuracy

– less sensitive to initialisation



Questions?
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Hard-to-detect dependence (1)

• COCO can be ≈ 0 for dependent RVs with highly non-smooth densities



Hard-to-detect dependence (1)

• COCO can be ≈ 0 for dependent RVs with highly non-smooth densities

• Reason: norms in the denominator

COCO(P;F,G) := sup
f∈F , g∈G

cov (f(x), g(y))

‖f‖F‖g‖G

• RESULT: not detectable with finite sample size

• More formally: see Ingster [1989]



Hard-to-detect dependence (2)
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Hard-to-detect dependence (3)

• Example: sinusoids of increasing frequency
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Choosing kernel size (1)

• The RKHS norm of f is ‖f‖2
HX

:=
∑∞

i=1 f̃
2
i

(
k̃i

)−1
.

• If kernel decays quickly, its spectrum decays slowly:

– then non-smooth functions have smaller RKHS norm

• Example: spectrum of two Gaussian kernels
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Choosing kernel size (2)

• Could we just decrease kernel size?

• Yes, but only up to a point
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