34 research outputs found
LiFT: A Scalable Framework for Measuring Fairness in ML Applications
Many internet applications are powered by machine learned models, which are
usually trained on labeled datasets obtained through either implicit / explicit
user feedback signals or human judgments. Since societal biases may be present
in the generation of such datasets, it is possible for the trained models to be
biased, thereby resulting in potential discrimination and harms for
disadvantaged groups. Motivated by the need for understanding and addressing
algorithmic bias in web-scale ML systems and the limitations of existing
fairness toolkits, we present the LinkedIn Fairness Toolkit (LiFT), a framework
for scalable computation of fairness metrics as part of large ML systems. We
highlight the key requirements in deployed settings, and present the design of
our fairness measurement system. We discuss the challenges encountered in
incorporating fairness tools in practice and the lessons learned during
deployment at LinkedIn. Finally, we provide open problems based on practical
experience.Comment: Accepted for publication in CIKM 202
Probabilistic Naming of Functions in Stripped Binaries
Debugging symbols in binary executables carry the names of functions and global variables. When present, they greatly simplify the process of reverse engineering, but they are almost always removed (stripped) for deployment. We present the design and implementation of punstrip, a tool which combines a probabilistic fingerprint of binary code based on high-level features with a probabilistic graphical model to learn the relationship between function names and program structure. As there are many naming conventions and developer styles, functions from different applications do not necessarily have the exact same name, even if they implement the exact same functionality. We therefore evaluate punstrip across three levels of name matching: exact; an approach based on natural language processing of name components; and using Symbol2Vec, a new embedding of function names based on random walks of function call graphs. We show that our approach is able to recognize functions compiled across different compilers and optimization levels and then demonstrate that punstrip can predict semantically similar function names based on code structure. We evaluate our approach over open source C binaries from the Debian Linux distribution and compare against the state of the art
TensorFlow
TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.Specific TensorFlow versions can be found in the "Versions" list on the right side of this page.<br>See the full list of authors <a href="https://github.com/tensorflow/tensorflow/graphs/contributors">on GitHub</a>
TensorFlow
TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.Specific TensorFlow versions can be found in the "Versions" list on the right side of this page.<br>See the full list of authors <a href="https://github.com/tensorflow/tensorflow/graphs/contributors">on GitHub</a>
