1,225 research outputs found

    Chandra view of Kes 79: a nearly isothermal SNR with rich spatial structure

    Full text link
    A 30 ks \chandra ACIS-I observation of Kes 79 reveals rich spatial structures, including many filaments, three partial shells, a loop and a ``protrusion''. Most of them have corresponding radio features. Regardless of the different results from two non-equilibrium ionization (NEI) codes, temperatures of different parts of the remnant are all around 0.7 keV, which is surprisingly constant for a remnant with such rich structure. If thermal conduction is responsible for smoothing the temperature gradient, a lower limit on the thermal conductivity of ∌\sim 1/10 of the Spitzer value can be derived. Thus, thermal conduction may play an important role in the evolution of at least some SNRs. No spectral signature of the ejecta is found, which suggests the ejecta material has been well mixed with the ambient medium. From the morphology and the spectral properties, we suggest the bright inner shell is a wind-driven shell (WDS) overtaken by the blast wave (the outer shell) and estimate the age of the remnant to be ∌\sim 6 kyr for the assumed dynamics. Projection is also required to explain the complicated morphology of Kes 79.Comment: 12 pages, 6 figures (3 in color), ApJ, in press, April 20, 200

    Drivers of Business-to-Business (B2B) Sales Success and the role of Digitalization after COVID-19 Disruptions

    Get PDF
    Purpose - The purpose of this research is to investigate the drivers of business-to-business sales success and the role of digitalization, in a selling and sales management landscape being disrupted by COVID-19. Design/methodology/approach – The methodology follows a discovery-oriented grounded theory approach which consists of a two-stage qualitative study with sales professionals in Chile, and a Fuzzy-Set Qualitative Comparative Analysis (fsQCA). Findings - This research shows that interfunctional coordination, agility in the selling process, and business customer engagement are critical determinants of B2B sales success, while digitalization moderates these relationships. Originality/value - This research responds to a call for more research on the impact of digitalization on business relationships in different contexts and perspectives. We study the Chilean context, through a two-stage qualitative study, and a fsQCA analysis, which constitutes a novel combination in this stream of research

    The LBT Panoramic View on the Recent Star-Formation Activity in IC2574

    Full text link
    We present deep imaging of the star-forming dwarf galaxy IC2574 in the M81 group taken with the Large Binocular Telescope in order to study in detail the recent star-formation history of this galaxy and to constrain the stellar feedback on its HI gas. We identify the star-forming areas in the galaxy by removing a smooth disk component from the optical images. We construct pixel-by-pixel maps of stellar age and stellar mass surface density in these regions by comparing their observed colors with simple stellar populations synthesized with STARBURST99. We find that an older burst occurred about 100 Myr ago within the inner 4 kpc and that a younger burst happened in the last 10 Myr mostly at galactocentric radii between 4 and 8 kpc. We analyze the stellar populations residing in the known HI holes of IC2574. Our results indicate that, even at the remarkable photometric depth of the LBT data, there is no clear one-to-one association between the observed HI holes and the most recent bursts of star formation in IC2574. The stellar populations formed during the younger burst are usually located at the periphery of the HI holes and are seen to be younger than the holes dynamical age. The kinetic energy of the holes expansion is found to be on average 10% of the total stellar energy released by the stellar winds and supernova explosions of the young stellar populations within the holes. With the help of control apertures distributed across the galaxy we estimate that the kinetic energy stored in the HI gas in the form of its local velocity dispersion is about 35% of the total stellar energy.Comment: 16 pages, 14 figures, accepted for publication in Ap

    Initial Ionization of Compressible Turbulence

    Full text link
    We study the effects of the initial conditions of turbulent molecular clouds on the ionization structure in newly formed H_{ii} regions, using three-dimensional, photon-conserving radiative transfer in a pre-computed density field from three-dimensional compressible turbulence. Our results show that the initial density structure of the gas cloud can play an important role in the resulting structure of the H_{ii} region. The propagation of the ionization fronts, the shape of the resulting H_{ii} region, and the total mass ionized depend on the properties of the turbulent density field. Cuts through the ionized regions generally show ``butterfly'' shapes rather than spherical ones, while emission measure maps are more spherical if the turbulence is driven on scales small compared to the size of the H_{ii} region. The ionization structure can be described by an effective clumping factor ζ=<n>⋅/2\zeta=< n > \cdot /^2, where nn is number density of the gas. The larger the value of ζ\zeta, the less mass is ionized, and the more irregular the H_{ii} region shapes. Because we do not follow dynamics, our results apply only to the early stage of ionization when the speed of the ionization fronts remains much larger than the sound speed of the ionized gas, or Alfv\'en speed in magnetized clouds if it is larger, so that the dynamical effects can be negligible.Comment: 9 pages, 10 figures, version with high quality color images can be found in http://research.amnh.org/~yuexing/astro-ph/0407249.pd

    Digital Deblurring of CMB Maps II: Asymmetric Point Spread Function

    Full text link
    In this second paper in a series dedicated to developing efficient numerical techniques for the deblurring Cosmic Microwave Background (CMB) maps, we consider the case of asymmetric point spread functions (PSF). Although conceptually this problem is not different from the symmetric case, there are important differences from the computational point of view because it is no longer possible to use some of the efficient numerical techniques that work with symmetric PSFs. We present procedures that permit the use of efficient techniques even when this condition is not met. In particular, two methods are considered: a procedure based on a Kronecker approximation technique that can be implemented with the numerical methods used with symmetric PSFs but that has the limitation of requiring only mildly asymmetric PSFs. The second is a variant of the classic Tikhonov technique that works even with very asymmetric PSFs but that requires discarding the edges of the maps. We provide details for efficient implementations of the algorithms. Their performance is tested on simulated CMB maps.Comment: 9 pages, 13 Figure

    Giant Molecular Clouds in M33 - I. BIMA All Disk Survey

    Full text link
    We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13" diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data we generated a catalog of 148 GMCs with an expectation that no more than 15 of the sources are spurious. The catalog is complete down to GMC masses of 1.5 X 10^5 M_sun and contains a total mass of 2.3 X 10^7 M_sun. Single dish observations of CO in selected fields imply that our survey detects ~50% of the CO flux, hence that the total molecular mass of M33 is 4.5 X 10^7 M_sun, approximately 2% of the HI mass. The GMCs in our catalog are confined largely to the central region (R < 4 kpc). They show a remarkable spatial and kinematic correlation with overdense HI filaments; the geometry suggests that the formation of GMCs follows that of the filaments. The GMCs exhibit a mass spectrum dN/dM ~ M^(-2.6 +/- 0.3), considerably steeper than that found in the Milky Way and in the LMC. Combined with the total mass, this steep function implies that the GMCs in M33 form with a characteristic mass of 7 X 10^4 M_sun. More than 2/3 of the GMCs have associated HII regions, implying that the GMCs have a short quiescent period. Our results suggest the rapid assembly of molecular clouds from atomic gas, with prompt onset of massive star formation.Comment: 19 pages, Accepted for Publication in the Astrophysical Journal Supplemen

    The true nature of the alleged planetary nebula W16-185

    Full text link
    We report the discovery of a small cluster of massive stars embedded in a NIR nebula in the direction of the IRAS15411-5352 point source, which is related to the alleged planetary nebula W16-185. The majority of the stars present large NIR excess characteristic of young stellar objects and have bright counterparts in the Spitzer IRAC images; the most luminous star (IRS1) is the NIR counterpart of the IRAS source. We found very strong unresolved Brgamma emission at the IRS1 position and more diluted and extended emission across the continuum nebula. From the sizes and electron volume densities we concluded that they represent ultra-compact and compact HII regions, respectively. Comparing the Brgamma emission with the 7 mm free-free emission, we estimated that the visual extinction ranges between 14 and 20 mag. We found that only one star (IRS1) can provide the number of UV photons necessary to ionize the nebula.Comment: 30 pages, 15 figures, 2 tables V3: minor grammatical changes. Figure 4 is available in pdf file. Accepted for publication in AJ, April / 200

    Environment, Ram Pressure, and Shell Formation in HoII

    Get PDF
    Neutral hydrogen VLA D-array observations of the dwarf irregular galaxy HoII, a prototype galaxy for studies of shell formation, are presented. HI is detected to radii over 16' or 4 R_25, and M_HI=6.44x10^8 M_sun. The total HI map has a comet-like appearance suggesting that HoII is affected by ram pressure from an intragroup medium (IGM). A rotation curve corrected for asymmetric drift was derived and an analysis of the mass distribution yields a total mass 6.3x10^9 M_sun, of which about 80% is dark. HoII lies northeast of the M81 group's core, along with Kar52 (M81dwA) and UGC4483. No signs of interaction are observed and it is argued that HoII is part of the NGC2403 subgroup, infalling towards M81. A case is made for ram pressure stripping and an IGM in the M81 group. Stripping of the disk outer parts would require an IGM density n_IGM>=4.0x10^-6 atoms/cm^3 at the location of HoII. This corresponds to 1% of the virial mass of the group uniformly distributed over a volume just enclosing HoII and is consistent with the X-ray properties of small groups. It is argued that existing observations of HoII do not support self-propagating star formation scenarios, whereby the HI holes and shells are created by supernova explosions and stellar winds. Many HI holes are located in low surface density regions of the disk, where no star formation is expected or observed. Ram pressure has the capacity to enlarge preexisting holes and lower their creation energies, helping to bridge the gap between the observed star formation rate and that required to create the holes. (abridged)Comment: 43 pages, including 7 figures. 4 figures available as JPEG only. Complete manuscript including full resolution figures available at http://www.strw.leidenuniv.nl/~bureau/pub_list.html . Accepted for publication in The Astronomical Journa

    Modal decomposition of astronomical images with application to shapelets

    Full text link
    The decomposition of an image into a linear combination of digitised basis functions is an everyday task in astronomy. A general method is presented for performing such a decomposition optimally into an arbitrary set of digitised basis functions, which may be linearly dependent, non-orthogonal and incomplete. It is shown that such circumstances may result even from the digitisation of continuous basis functions that are orthogonal and complete. In particular, digitised shapelet basis functions are investigated and are shown to suffer from such difficulties. As a result the standard method of performing shapelet analysis produces unnecessarily inaccurate decompositions. The optimal method presented here is shown to yield more accurate decompositions in all cases.Comment: 12 pages, 17 figures, submitted to MNRA

    Molecular Counterparts of Ultracompact HII Regions with Extended Envelopes

    Full text link
    We carried out 13CO J=1-0, CS, and C34S J=2-1 and J=3-2 line observations of molecular clouds associated with 16 ultracompact (UC) HII regions with extended envelopes. The molecular clouds are the ones that give birth to rich stellar clusters and/or very massive (O7-O4) stars. Our data show that the clouds are very clumpy and of irregular morphology. They usually have much larger masses, velocity dispersions, and fractions of dense gas than molecular clouds that form early B or late O stars. This is compatible with earlier findings that more massive stars form in more massive cores. 13CO cores are in general associated with compact HII regions regardless of the presence of UC HII regions therein. In contrast, CS cores are preferentially associated with compact HII regions that contain UC HII regions. As with the fact that the compact HII regions containing UC HII regions are more compact than those not associated with UC HII regions, these indicate that the former may be in an earlier evolutionary phase than the latter. The diffuse extended envelopes of HII regions often develop in the direction of decreasing molecular gas density. Based on detailed comparison of molecular line data with radio continuum and recombination line data, the extended ionized envelopes are likely the results of champagne flows in at least 10 sources in our sample. Together these results appear to support a published suggestion that the extended emission around UC HII regions can be naturally understood by combining the champagne flow model with the hierarchical structure of molecular clouds. We discuss the implication of our results for the blister model of HII regions.Comment: 36 pages, including 30 figures, accepted for publication in Ap
    • 

    corecore