10 research outputs found

    Birth order Bingo: F1, M2, L3

    Get PDF

    Birth order Bingo: F1, M2, L3

    Get PDF

    ExoMol molecular line lists - XIV. The rotation-vibration spectrum of hot SO<sub>2</sub>

    Get PDF
    Sulphur dioxide is well-known in the atmospheres of planets and satellites, where its presence is often associated with volcanism, and in circumstellar envelopes of young and evolved stars as well as the interstellar medium. This work presents a line list of 1.3 billion 32^{32}S16^{16}O2_2 vibration-rotation transitions computed using an empirically-adjusted potential energy surface and an ab initio dipole moment surface. The list gives complete coverage up to 8000 cm−1^{-1} (wavelengths longer than 1.25 μ\mum) for temperatures below 2000 K. Infrared absorption cross sections are recorded at 300 and 500 C are used to validated the resulting ExoAmes line list. The line list is made available in electronic form as supplementary data to this article and at www.exomol.com.Comment: Submitted to MNRA

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    Astro2020 Science White Paper The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Get PDF
    Astro2020 Science White Pape

    The HITRAN2020 molecular spectroscopic database

    No full text
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years).All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3_3F, GeH4_4, CS2_2, CH3_3I and NF. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules.The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Astro2020: Decadal Survey on Astronomy and Astrophysics : State of the Profession Considerations for Laboratory Astrophysics

    No full text
    International audienceAstrophysics advances, in part, through laboratory astrophysics studies of the underlying processes controlling the observed properties of the Cosmos. These studies encompass both theoretical and experimental research. Robust support for laboratory astrophysics is critically needed to maximize the scientific return of astronomical observations
    corecore