21 research outputs found

    Perturbative effective field theory expansions for cosmological phase transitions

    Full text link
    Guided by previous non-perturbative lattice simulations of a two-step electroweak phase transition, we reformulate the perturbative analysis of equilibrium thermodynamics for generic cosmological phase transitions in terms of effective field theory (EFT) expansions. Based on thermal scale hierarchies, we argue that the scale of many interesting phase transitions is in-between the soft and ultrasoft energy scales, which have been the focus of studies utilising high-temperature dimensional reduction. The corresponding EFT expansions provide a handle to control the perturbative expansion, and allow us to avoid spurious infrared divergences, imaginary parts, gauge dependence and renormalisation scale dependence that have plagued previous studies. As a direct application, we present a novel approach to two-step electroweak phase transitions, by constructing separate effective descriptions for two consecutive transitions. Our approach provides simple expressions for effective potentials separately in different phases, a numerically inexpensive method to determine thermodynamics, and significantly improves agreement with the non-perturbative lattice simulations.Comment: 58 pages, 14 figure

    Combining thermal resummation and gauge invariance for electroweak phase transition

    Get PDF
    For computing thermodynamics of the electroweak phase transition, we discuss a minimal approach that reconciles both gauge invariance and thermal resummation. Such a minimal setup consists of a two-loop dimensional reduction to three-dimensional effective theory, a one-loop computation of the effective potential and its expansion around the leading-order minima within the effective theory. This approach is tractable and provides formulae for resummation that are arguably no more complicated than those that appear in standard techniques ubiquitous in the literature. In particular, we implement renormalisation group improvement related to the hard thermal scale. Despite its generic nature, we present this approach for the complex singlet extension of the Standard Model which has interesting prospects for high energy collider phenomenology and dark matter predictions. The presented expressions can be used in future studies of phase transition thermodynamics and gravitational wave production in this model.Peer reviewe

    Robust approach to thermal resummation : Standard Model meets a singlet

    Get PDF
    Perturbation theory alone fails to describe thermodynamics of the electroweak phase transition. We review a technique combining perturbative and non-perturbative methods to overcome this challenge. Accordingly, the principal theme is a tutorial of high-temperature dimensional reduction. We present an explicit derivation with a real singlet scalar and compute the thermal effective potential at two-loop order. In particular, we detail the dimensional reduction for a real-singlet extended Standard Model. The resulting effective theory will impact future non-perturbative studies based on lattice simulations as well as purely perturbative investigations.Peer reviewe

    Perturbative effective field theory expansions for cosmological phase transitions

    Get PDF
    Guided by previous non-perturbative lattice simulations of a two-step electroweak phase transition, we reformulate the perturbative analysis of equilibrium thermodynamics for generic cosmological phase transitions in terms of effective field theory (EFT) expansions. Based on thermal scale hierarchies, we argue that the scale of many interesting phase transitions is in-between the soft and ultrasoft energy scales, which have been the focus of studies utilising high-temperature dimensional reduction. The corresponding EFT expansions provide a handle to control the perturbative expansion, and allow us to avoid spurious infrared divergences, imaginary parts, gauge dependence and renormalisation scale dependence that have plagued previous studies. As a direct application, we present a novel approach to two-step electroweak phase transitions, by constructing separate effective descriptions for two consecutive transitions. Our approach provides simple expressions for effective potentials separately in different phases, a numerically inexpensive method to determine thermodynamics, and significantly improves agreement with the non-perturbative lattice simulations

    Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    Get PDF
    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2)(L) x U(1)(y) gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.Peer reviewe

    Three-dimensional effective theories for the two Higgs doublet model at high temperature

    Get PDF
    Due to the infrared problem of high-temperature field theory, a robust study of the electroweak phase transition (EWPT) requires use of non-perturbative methods. We apply the method of high-temperature dimensional reduction to the two Higgs doublet model (2HDM) to obtain three-dimensional effective theories that can be used for non-perturbative simulations. A detailed derivation of the mapping between the full four-dimensional and the effective three-dimensional theories is presented. The results will be used in future lattice studies of the 2HDM. In the limit of large mass mixing between the doublets, existing lattice results can be recycled. The results of such a study are presented in a companion paper.Peer reviewe

    On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

    Get PDF
    Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved with perturbative methods within the effective theory. We find that in the presence of very large scalar couplings, strong phase transitions cannot be reliably studied with any of the methods.Peer reviewe

    Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition

    Get PDF
    We present the first end-to-end nonperturbative analysis of the gravitational wave power spectrum from a thermal first-order electroweak phase transition (EWPT), using the framework of dimensionally reduced effective field theory and preexisting nonperturbative simulation results. We are able to show that a first-order EWPT in any beyond the Standard Model (BSM) scenario that can be described by a Standard Model-like effective theory at long distances will produce gravitational wave signatures too weak to be observed at existing and planned detectors. This implies that colliders are likely to provide the best chance of exploring the phase structure of such theories, while transitions strong enough to be detected at gravitational wave experiments require either previously neglected higher-dimension operators or light BSM fields to be included in the dimensionally reduced effective theory and therefore necessitate dedicated nonperturbative studies. As a concrete application, we analyze the real singlet-extended Standard Model and identify regions of parameter space with single-step first-order transitions, comparing our findings to those obtained using a fully perturbative method. We discuss the prospects for exploring the electroweak phase diagram in this model at collider and gravitational wave experiments in light of our nonperturbative results.Peer reviewe
    corecore