21 research outputs found

    An approach to calculate radiation noise of gear system

    Get PDF
    A rigid-flexible coupling multi-body dynamic model which contains the structure system and transmission system of gear device is developed taking account of the internal excitations such as the time-varying mesh stiffness, tooth backlash and bearing stiffness and the external torque and speed excitation. Then the dynamic meshing forces of gear pairs and bearing reaction forces are calculated based on the dynamic theory of multi-body system. Afterwards, a vibro-acoustic coupling model of the gear system is established by taking the frequency histories of bearing reaction forces as the boundary conditions, and then the surface sound pressure of gearbox and the radiation noise of outer sound field are calculated. In fact, the proposed model would provide a quicker approach to analyze the radiation noise of the gear system during the design phase. Finally, the radiation noise experimental study is performed on the experimental prototype to verify the rationality of the analysis. The comparison analysis shows that computational results are in good agreement with the data of experiment test

    Prediction and experimental study on structure and radiation noise of subway gearbox

    Get PDF
    A dynamic finite element model of a coupled gear-rotor-bearing-housing gear system is developed by combining the gearbox transmission model with the housing structure model of subway gearbox with taking stiffness excitation, error exaction and meshing impact exaction as the dynamic excitation. The intrinsic modes and vibration response are computed in the numerical simulation process. Then an acoustic boundary element model of the gearbox is established by using the result of vibration displacement of the nodes on gearbox surface as acoustic boundary conditions. The surface sound pressure of gearbox and radiation noise of field points are solved by the direct boundary element method. In fact the proposed modeling approach not only provides a more comprehensive understanding of the subway gear system, but also can serve as the basis for dynamic and noise optimization of gear system. Finally a vibration and radiation noise experimental study is performed on the subway gear system. The vibration and radiation noise at some concerned locations are monitored and analysed. The comparison analysis shows that computational results are in good agreement with the data of experiment tests

    Mathematical models and dynamic contact analysis of involute/noninvolute beveloid gears

    Get PDF
    This study investigates an approach for parametric modeling and dynamic contact analysis of involute/noninvolute beveloid gears. Firstly, the mathematical models of involute/noninvolute beveloid gear pairs are derived based on the theory of gearing and the generation mechanism. Then the parametric modeling programs of involute/noninvolute beveloid gears are developed to automatically generate exact model via a Matlab code. Subsequently, a numerical example of intersecting axes beveloid gears is presented to evaluate the dynamic stress distribution and dynamic transmission error. Finally, the dynamic contact characteristics of involute and noninvolute beveloid gears are calculated by three-dimensional dynamic contact finite element method, respectively. The results show that the noninvolute beveloid gear pairs can relieve the high dynamic stress and contact shock problem of intersecting axes beveloid gear pairs

    Joint parameter identification, vibration and noise analysis of gearbox

    Get PDF
    A certain type of gearbox is investigated for the problem that the stiffness and damping of bearings are difficult to be accurately determined and then affect the analysis of vibration and noise of gearbox. Firstly, a coupled dynamic lumped parameter model of three-stage helical gear system with consideration of bearing stiffness, bearing damping, and transmission error is established. The modal parameters of gear system are obtained by using the experimental modal analysis method with single-input and multiple-output. The equation for joint parameter identification of gearbox is established which is based on the experimental modal analysis theory and the dynamic lumped parameter model, and subsequently the parameters of the joint are obtained by the least square method. Then, a gear-shaft-bearing- housing coupled dynamic finite element model is developed on the basis of the identified parameters, and after that the dynamic response results of gearbox are solved by using the modal superposition method and compared with the vibration test results. Finally, an acoustic boundary element model of gearbox is established by taking the dynamic response results as the acoustic boundary condition, and the surface sound pressure and radiation noise of gearbox are solved by the boundary element method (BEM), and then the results are compared with the noise test. The results show that the simulation laws and test laws are in good agreement, and thus the method of joint parameter identification, vibration and noise analysis of gearbox is feasible

    Analytical and computational method of structure-borne noise and shock resistance of gear system

    Get PDF
    An approach to synthetically evaluate structure-borne noise and shock resistance of gear system is proposed. Firstly, dynamic finite element mesh model of gear system which includes shafts, bearings, gears and housing is established by using spring element, tetrahedral element and hexahedral element. Then dynamic finite element analysis model of gear system is gotten by loading the dynamic excitation force which can be calculated via the computation program of gear pair stiffness excitation, error excitation and impact excitation onto the tooth meshing line as boundary conditions. And the dynamic response of gear system is analyzed by using modal superposition method, and the vibration response experimental study of gear system is performed on the gearbox test-bed. The comparative analysis shows that computational results of the vibration response are in good agreement with the data of experiment tests and it could verify the rationality of dynamic finite element mesh model of gear system. Finally, taking acceleration shock excitation load into account on the basis of the dynamic finite element mesh model, the impact response of gear system is solved, and the shock resistance is analyzed based on the strength decision criterion

    An approach to calculate radiation noise of gear system

    Get PDF
    A rigid-flexible coupling multi-body dynamic model which contains the structure system and transmission system of gear device is developed taking account of the internal excitations such as the time-varying mesh stiffness, tooth backlash and bearing stiffness and the external torque and speed excitation. Then the dynamic meshing forces of gear pairs and bearing reaction forces are calculated based on the dynamic theory of multi-body system. Afterwards, a vibro-acoustic coupling model of the gear system is established by taking the frequency histories of bearing reaction forces as the boundary conditions, and then the surface sound pressure of gearbox and the radiation noise of outer sound field are calculated. In fact, the proposed model would provide a quicker approach to analyze the radiation noise of the gear system during the design phase. Finally, the radiation noise experimental study is performed on the experimental prototype to verify the rationality of the analysis. The comparison analysis shows that computational results are in good agreement with the data of experiment test

    Modal Analysis and an Experimental Study Into a Marine Gearbox Featuring Confluence Transmission

    Get PDF
    An approach to calculating vibration modal characteristics of a marine gear system featuring confluence transmission based on the theoretical and the experimental modal analysis is given in view of the fact that it is difficult to accurately determine the modal data of the system because of its complex vibration mechanism. Firstly, a dynamic finite element model of a coupled gear-rotor-bearing-housing system is developed by combining the gearbox transmission model with the gearbox housing model using the modal parameter identification data. Then, the modal frequency and the mode of vibration can be obtained. In fact, the proposed model can provide a faster approach to analysing the mode of the gear system vibration. Finally, experimental testing of the mode of vibration is performed on the experimental prototype to verify the rationality of the theoretical analysis. A comparison of the two sets of results shows that the experimental results are in good agreement with the computational results, with a maximum error of 6.3%

    An approach to calculate radiation noise of gear system

    Get PDF
    A rigid-flexible coupling multi-body dynamic model which contains the structure system and transmission system of gear device is developed taking account of the internal excitations such as the time-varying mesh stiffness, tooth backlash and bearing stiffness and the external torque and speed excitation. Then the dynamic meshing forces of gear pairs and bearing reaction forces are calculated based on the dynamic theory of multi-body system. Afterwards, a vibro-acoustic coupling model of the gear system is established by taking the frequency histories of bearing reaction forces as the boundary conditions, and then the surface sound pressure of gearbox and the radiation noise of outer sound field are calculated. In fact, the proposed model would provide a quicker approach to analyze the radiation noise of the gear system during the design phase. Finally, the radiation noise experimental study is performed on the experimental prototype to verify the rationality of the analysis. The comparison analysis shows that computational results are in good agreement with the data of experiment test

    MBA: A market-based approach to data allocation and migration for cloud database

    Full text link
    With the coming shift to cloud computing, cloud database is emerging to provide database service over the Internet. In the cloud-based environment, data are distributed at internet scale and the system needs to handle a huge number of user queries simultaneously without delay. How data are distributed among the servers has a crucial impact on the query load distribution and the system response time. In this paper, we propose a market-based control method, called MBA, to achieve query load balance via reasonable data distribution. In MBA, database nodes are treated as traders in a market, and certain market rules are used to intelligently decide data allocation and migration. We built a prototype system and conducted extensive experiments. Experimental results show that the MBA method signicantly improves system performance in terms of average query response time and fairness

    MBA: A market-based approach to data allocation and dynamic migration for cloud database

    Get PDF
    With the coming shift to cloud computing, cloud database is emerging to provide database service over the Internet. In the cloud-based environment, data are distributed at Internet scale and the system needs to handle a huge number of user queries simultaneously without delay. How data are distributed among the servers has a crucial impact on the query load distribution and the system response time. In this paper, we propose a market-based control method, called MBA, to achieve query load balance via reasonable data distribution. In MBA, database nodes are treated as traders in a market, and certain market rules are used to intelligently decide data allocation and migration. We built a prototype system and conducted extensive experiments. Experimental results show that the MBA method signicantly improves system performance in terms of average query response time and fairness
    corecore