58 research outputs found

    Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering

    Get PDF
    In the last years, tremendous progress has been made in the development of CRISPR/Cas-mediated genome editing tools. A number of natural CRISPR/Cas nuclease variants have been characterized. Engineered Cas proteins have been developed to minimize PAM restrictions, off-side effects and temperature sensitivity. Both kinds of enzymes have, by now, been applied widely and efficiently in many plant species to generate either single or multiple mutations at the desired loci by multiplexing. In addition to DSB-induced mutagenesis, specifically designed CRISPR/Cas systems allow more precise gene editing, resulting not only in random mutations but also in predefined changes. Applications in plants include gene targeting by homologous recombination, base editing and, more recently, prime editing. We will evaluate these different technologies for their prospects and practical applicability in plants. In addition, we will discuss a novel application of the Cas9 nuclease in plants, enabling the induction of heritable chromosomal rearrangements, such as inversions and translocations. This technique will make it possible to change genetic linkages in a programmed way and add another level of genome engineering to the toolbox of plant breeding. Also, strategies for tissue culture free genome editing were developed, which might be helpful to overcome the transformation bottlenecks in many crops. All in all, the recent advances of CRISPR/Cas technology will help agriculture to address the challenges of the twenty-first century related to global warming, pollution and the resulting food shortage

    Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a

    Get PDF
    Nicotiana tabacum is a non‐food herb that has the potential to be utilized as bio‐factory for generating medicines, vaccines or valuable small metabolites. To achieve these goals, the improvement of genetic tools for pre‐designed genome modifications is indispensable. The development of CRISPR/Cas nucleases allows the induction of site‐specific double‐strand breaks to enhance homologous recombination‐mediated gene targeting (GT). However, the efficiency of GT is still a challenging obstacle for many crops including tobacco. Recently, studies in several plant species indicated that by replacing SpCas9 with other CRISPR/Cas‐based nucleases, GT efficiencies might be enhanced considerably. Therefore, we tested SaCas9 as well as a temperature‐insensitive version of LbCas12a (ttLbCas12a) for targeting the tobacco SuRB gene. At the same time, we also optimized the protocol for Agrobacterium‐mediated tobacco transformation and tissue culture. In this way, we could improve GT efficiencies to up to a third of the inoculated cotyledons when using ttLbCas12a, which outperformed SaCas9 considerably. In addition, we could show that the conversion tract length of the GT reaction can be up to 606 bp long and in the majority of cases, it is longer than 250 bp. We obtained multiple heritable GT events, mostly heterozygous, but also biallelic GT events and some without T‐DNA integration. Thus, we were not only able to obtain CRISPR/Cas‐based heritable GT events in allotetraploid Nicotiana tabacum for the first time, but our results also indicate that ttLbCas12a might be a superior alternative for gene editing and GT in tobacco as well as in other crops

    Operative Treatment of Intra-articular Distal Radius Fractures Using the Small AO External Fixation Device

    Get PDF
    BackgroundA retrospective group study was done to evaluate the effect of the small AO external fixator in the management of acute intra-articular fractures of the distal radius.MethodsBetween January 1995 and December 1996, 70 consecutive patients with articular fractures of the distal radius were treated by closed reduction and external fixation with small AO external fixators. The mean age at the time of surgery was 58.9 years (range, 14–87 years). There were 58 Colles' Barton's fractures and 12 Smith's Barton's fractures. The follow-up period was 104 months (range, 92–118 months).ResultsAll fractures united in a mean of 5.8 weeks (range, 4–10 weeks). At the final follow-up, the average range of motion was 56.3 ± 11.6° in flexion, 58.6 ± 10.7° in extension, 21.5 ± 4.2° in ulnar deviation, 9.1 ± 2.9° in radial deviation, 71.5 ± 8.5° in pronation, and 67.3 ± 9.2° in supination. Compared with the normal side, the average grip force was 87 ± 6%. The overall clinical and functional outcomes, according to the scoring system of Gartland and Werley, showed that 22 patients (31.4%) had excellent results, 36 (51.4%) had good results, 9 (12.9%) had fair results, and 3 (4.3%) had poor results.ConclusionClosed reduction and external fixation with the small AO external fixator is useful and effective in the management of displaced comminuted articular fractures of the distal radius

    PALM: A Paralleled and Integrated Framework for Phylogenetic Inference with Automatic Likelihood Model Selectors

    Get PDF
    BACKGROUND: Selecting an appropriate substitution model and deriving a tree topology for a given sequence set are essential in phylogenetic analysis. However, such time consuming, computationally intensive tasks rely on knowledge of substitution model theories and related expertise to run through all possible combinations of several separate programs. To ensure a thorough and efficient analysis and avert tedious manipulations of various programs, this work presents an intuitive framework, the phylogenetic reconstruction with automatic likelihood model selectors (PALM), with convincing, updated algorithms and a best-fit model selection mechanism for seamless phylogenetic analysis. METHODOLOGY: As an integrated framework of ClustalW, PhyML, MODELTEST, ProtTest, and several in-house programs, PALM evaluates the fitness of 56 substitution models for nucleotide sequences and 112 substitution models for protein sequences with scores in various criteria. The input for PALM can be either sequences in FASTA format or a sequence alignment file in PHYLIP format. To accelerate the computing of maximum likelihood and bootstrapping, this work integrates MPICH2/PhyML, PalmMonitor and Palm job controller across several machines with multiple processors and adopts the task parallelism approach. Moreover, an intuitive and interactive web component, PalmTree, is developed for displaying and operating the output tree with options of tree rooting, branches swapping, viewing the branch length values, and viewing bootstrapping score, as well as removing nodes to restart analysis iteratively. SIGNIFICANCE: The workflow of PALM is straightforward and coherent. Via a succinct, user-friendly interface, researchers unfamiliar with phylogenetic analysis can easily use this server to submit sequences, retrieve the output, and re-submit a job based on a previous result if some sequences are to be deleted or added for phylogenetic reconstruction. PALM results in an inference of phylogenetic relationship not only by vanquishing the computation difficulty of ML methods but also providing statistic methods for model selection and bootstrapping. The proposed approach can reduce calculation time, which is particularly relevant when querying a large data set. PALM can be accessed online at http://palm.iis.sinica.edu.tw

    Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from Pigs to Humans, Taiwan

    Get PDF
    We evaluated the disk susceptibility data of 671 nontyphoid Salmonella isolates collected from different parts of Taiwan from March 2001 to August 2001 and 1,261 nontyphoid Salmonella isolates from the National Taiwan University Hospital from 1996 to 2001. Overall, ciprofloxacn resistance was found in 2.7% (18/671) of all nontyphoid Salmonella isolates, in 1.4% (5/347) of Salmonella enterica serotype Typhimurium and in 7.5% (8/107) in S. enterica serotype Choleraesuis nationwide. MICs of six newer fluoroquinolones were determined for the following isolates: 37 isolates of ciprofloxacin-resistant (human) S. enterica Typhimurium (N = 26) and Choleraesuis (N = 11), 10 isolates of ciprofloxacin-susceptible (MIC <1 μg/mL) (human) isolates of these two serotypes, and 15 swine isolates from S. enterica Choleraesuis (N = 13) and Typhmurium (N = 2) with reduced susceptibility to ciprofloxacin (MIC >0.12 μg/mL). Sequence analysis of the gryA, gyrB, parC, parE, and acrR genes, ciprofloxacin accumulation; and genotypes generated by pulsed-field gel electrophoresis with three restriction enzymes (SpeI, XbaI, and BlnI) were performed. All 26 S. enterica Typhimurium isolates from humans and pigs belonged to genotype I. For S. enterica Choleraesuis isolates, 91% (10/11) of human isolates and 54% (7/13) of swine isolates belonged to genotype B. These two genotypes isolates from humans all exhibited a high-level of resistance to ciprofloxacin (MIC 16–64 μg/mL). They had two-base substitutions in the gyrA gene at codons 83 (Ser83Phe) and 87 (Asp87Gly or Asp87Asn) and in the parC gene at codon 80 (Ser80Arg, Ser80Ile, or Ser84Lys). Our investigation documented that not only did these two S. enterica isolates have a high prevalence of ciprofloxacin resistance nationwide but also that some closely related ciprofloxacin-resistant strains are disseminated from pigs to humans

    Isolation and Characterization of Novel Murine Epiphysis Derived Mesenchymal Stem Cells

    Get PDF
    BACKGROUND: While bone marrow (BM) is a rich source of mesenchymal stem cells (MSCs), previous studies have shown that MSCs derived from mouse BM (BMMSCs) were difficult to manipulate as compared to MSCs derived from other species. The objective of this study was to find an alternative murine MSCs source that could provide sufficient MSCs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we described a novel type of MSCs that migrates directly from the mouse epiphysis in culture. Epiphysis-derived MSCs (EMSCs) could be extensively expanded in plastic adherent culture, and they had a greater ability for clonogenic formation and cell proliferation than BMMSCs. Under specific induction conditions, EMSCs demonstrated multipotency through their ability to differentiate into adipocytes, osteocytes and chondrocytes. Immunophenotypic analysis demonstrated that EMSCs were positive for CD29, CD44, CD73, CD105, CD166, Sca-1 and SSEA-4, while negative for CD11b, CD31, CD34 and CD45. Notably, EMSCs did not express major histocompatibility complex class I (MHC I) or MHC II under our culture system. EMSCs also successfully suppressed the proliferation of splenocytes triggered by concanavalin A (Con A) or allogeneic splenocytes, and decreased the expression of IL-1, IL-6 and TNF-α in Con A-stimulated splenocytes suggesting their anti-inflammatory properties. Moreover, EMSCs enhanced fracture repair, ameliorated necrosis in ischemic skin flap, and improved blood perfusion in hindlimb ischemia in the in vivo experiments. CONCLUSIONS/SIGNIFICANCES: These results indicate that EMSCs, a new type of MSCs established by our simple isolation method, are a preferable alternative for mice MSCs due to their better growth and differentiation potentialities

    NITROGEN LIMITATION ADAPTATION, a Target ofMicroRNA827, Mediates Degradation of PlasmaMembrane–Localized Phosphate Transporters toMaintain Phosphate Homeostasis in Arabidopsis

    No full text
    Members of the Arabidopsis thaliana PHOSPHATE TRANSPORTER1 (PHT1) family are key players in acquisition of Pi from the rhizosphere, and their regulation is indispensable for the maintenance of cellular Pi homeostasis. Here, we reveal posttranslational regulation of Pi transport through modulation of degradation of PHT1 proteins by the RING-type ubiquitin E3 ligase, NITROGEN LIMITATION ADAPTATION (NLA). Loss of function of NLA caused high Pi accumulation resulting from increases in the levels of several PHT1s at the protein rather than the transcript level. Evidence of decreased endocytosis and ubiquitination of PHT1s in nla mutants and interaction between NLA and PHT1s in the plasma membranes suggests that NLA directs the ubiquitination of plasma membrane–localized PHT1s, which triggers clathrin-dependent endocytosis followed by endosomal sorting to vacuoles. Furthermore, different subcellular localization of NLA and PHOSPHATE2 (PHO2; a ubiquitin E2 conjugase) and the synergistic effect of the accumulation of PHT1s and Pi in nla pho2 mutants suggest that they function independently but cooperatively to regulate PHT1 protein amounts. Intriguingly, NLA and PHO2 are the targets of two Pi starvation-induced microRNAs, miR827 and miR399, respectively. Therefore, our findings uncover modulation of Pi transport activity in response to Pi availability through the integration of a microRNA-mediated posttranscriptional pathway and a ubiquitin-mediated posttranslational regulatory pathway

    High Voltage Stress Impact on P Type Crystalline Silicon PV Module

    No full text

    Formal Synthesis of the ACE Inhibitor Benazepril·HCl via an Asymmetric Aza-Michael Reaction

    No full text
    A formal enantioselective synthesis of benazepril·HCl (4), an anti- hypertensive drug, is reported. Our synthesis employed an asymmetric aza-Michael addition of L-homophenylalanine ethyl ester (LHPE, 1) to 4-(2-nitrophenyl)-4-oxo- but-2-enoic acid methyl ester (6) as the key step to prepare (2S,3’S)-2-(2-oxo-2,3,4,5- tetrahydro-1H-benzo[b]azepin-3-ylamino)-4-phenylbutyric acid ethyl ester (8), which is the key intermediate leading to benazepril·HCl (4)
    corecore