6,998 research outputs found

    Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow-derived stromal cells (BMSCs) are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor.</p> <p>Methods</p> <p>Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1). The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models.</p> <p>Results</p> <p>BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors.</p> <p>Conclusion</p> <p>We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment.</p

    Neurological complications during the Omicron COVID-19 wave in China: A cohort study

    Get PDF
    Background and purpose: The aim was to investigate the neurological complications associated with coronavirus disease 19 (COVID-19) during the 2022 Omicron wave. Methods and analysis: The medical records of a cohort of people admitted to neurological wards of three participating tertiary centres in Sichuan from 12 December 2022 to 12 January 2023 were reviewed. Demographics and clinical data were obtained and analysed with an interest in COVID-19-related new-onset or worse neurological symptoms. The current data were also compared in two centres with similar data from the same period 12 months earlier. Results: In all, 790 people were enrolled, of whom 436 were positive for COVID-19. Ninety-nine had new onset COVID-related neurological problems, or their known neurological condition deteriorated during the wave. There was a significant difference in demographics from the findings amongst admissions 12 months earlier as there was an increase in the average age, the incidence of encephalitis and encephalopathy, and mortality rates. One hundred and one received COVID-specific antivirals, intravenous glucocorticoids and intravenous immunoglobulin therapy. No differences were seen between these and those who did not use them. Conclusion: New-onset neurological conditions, particularly encephalitis and encephalopathy, increased significantly during this period. Deterioration of existing neurological conditions, such as seizure exacerbation, was also observed. A large-scale treatment trial of people with COVID-19 infection presenting with neurological disorders is still needed

    Potassium isotopic fractionation during clay adsorption

    Get PDF
    Clay adsorption is a critical process responsible for the mobilization and cycling of potassium (K) on Earth's surface. Recent studies emphasized the potential of using stable K isotopes (δ41K) to understand chemical weathering. However, the direction, degree, and mechanism of K isotopic fractionation linked to clay K uptake during chemical weathering remain poorly constrained. This work investigated the mechanism of K adsorption on clays (kaolinite and smectite) and the isotopic fractionation in three experimental sets with K-containing solutions. The time-series experiments revealed that the adsorption and isotope equilibria were attained after less than 12-hour reaction. Potassium adsorption rate slowed down and its isotopic fractionation approached the steady-state during 15-day reaction. The pH-dependent experiments demonstrated that the percentage of clay K adsorption and the isotopic composition of adsorbed K (and aqueous K) display negative linear correlations. Net isotopic fractionation between adsorbed and aqueous phases (Δ41Kad-aq) remained near-constant (0.6–0.8‰), regardless of variations in pH ranging from 4 to 10. The concentration-control experiments demonstrated that the percentage of K adsorption decreased with increasing KCl concentrations from 0.005 to 20 mM. The δ41K values of aqueous K reached the minimum of −0.53‰ after 92.7% K adsorbed (initial KCl of 0.005 mM). Potassium adsorption was substantially suppressed as ionic strength (fixed by Na+) increased from 0.001 to 0.5 M without apparent Δ41Kad-aq variations. The K K-edge XANES demonstrated that primary K incorporated in clay lattice and surface KCl derived from sorbed K+ and Cl− synchro-dehydration can be identified after drying of clays. These features indicate that adsorbed K+ was bounded onto clays as outer-sphere complexes, which can be replaced with excess Na+ at high ionic strength. Based on experimental results, we cannot distinguish specific mineralogy regulation on K isotopic fractionation. In sum, isotopically heavy K is preferentially sorbed on clay minerals. The results confirm an equilibrium fractionation path independent of reaction time, pH, ionic strength, and initial KCl concentration. Observed K isotopic fractionation is best fitted by an equilibrium isotopic fractionation law with a fractionation factor αad-aq of 1.00075. We highlight the opposite direction of K isotopic fractionation in clay adsorption and structural incorporation during chemical weathering, and their comparative contributions should be considered for future field investigations

    Simultaneous enhancement of electron overflow reduction and hole injection promotion by tailoring the last quantum barrier in InGaN/GaN light-emitting diodes

    Get PDF
    Cataloged from PDF version of article.A three-step graded undoped-InGaN layers embedded between the GaN last quantum barrier layer and the p-AlGaN electron blocking layer was proposed and its effect on the performance of InGaN/GaN light-emitting diodes was investigated both experimentally and theoretically. In the proposed structure, the electron leakage is found to be effectively reduced, while the hole injection efficiency is simultaneously increased significantly, hence enabling a greatly enhanced radiative recombination rate within the active region. As a result, improvements of 12.25% in the optical output power and 11.98% in the external quantum efficiency are obtained from the proposed device with the respect to the reference device. (C) 2014 AIP Publishing LLC

    Tantalum disulfide quantum dots: preparation, structure, and properties

    Get PDF
    202006 bcmaVersion of RecordPublishe

    Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science

    Get PDF
    The emergence of single atom sites as a frontier research area in catalysis has sparked extensive academic and industrial interest, especially for energy, environmental and chemicals production processes. Single atom catalysts (SACs) have shown remarkable performance in a variety of catalytic reactions, demonstrating high selectivity to the products of interest, long lifespan, high stability and more importantly high atomic metal utilization efficiency. In this review, we unveil in depth insights on development and achievements of SACs, including (a) Chronological progress on SACs development, (b) Recent advances in SACs synthesis, (c) Spatial and temporal SACs characterization techniques, (d) Application of SACs in different energy and chemical production, (e) Environmental and economic aspects of SACs, and (f) Current challenges, promising ideas and future prospects for SACs. On a whole, this review serves to enlighten scientists and engineers in developing fundamental catalytic understanding that can be applied into the future, both for academia or valorizing chemical processes

    Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps

    Full text link
    Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time- amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences, and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a chi-square goodness-of-fit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.Comment: 13 pages, accepted for publication in CQ
    corecore