35 research outputs found

    Effects of EGR rates on combustion and emission characteristics in a diesel engine with n-butanol/PODE3-4/diesel blends

    Get PDF
    An experimental investigation is conducted on the influence of EGR (Exhaust Gas Recirculation) rates (0–40%) on the combustion and emission characteristics of n-butanol/diesel/PODE3-4 blends at low-temperature combustion mode in diesel engine. The results show that at identical EGR rate, compared to D100 (diesel fuel), the peak values both of the mean cylinder pressure and the heat release rate of BD20 (20% butanol and 80% diesel in volume) are increased, ignition delay is extended, and the brake thermal efficiency is enhanced. Concerning BD20 blended with PODE3-4, the ignition delay is shortened, while both the brake thermal efficiency and the combustion efficiency increase. At the EGR rate below 30%, as the EGR rate grows, the effects on emission of soot, CO and HC are not significant, while the emission of NOx is sharply reduced; when the EGR rate is above 30%, as it grows, the emissions of soot, CO, and HC drastically rise. As EGR rate grows, the total particulate matter (PM) number concentrations of four fuels firstly decline and then rise, the total PM mass concentrations keep stable firstly and then rise drastically. As the proportion of added PODE3-4 in BD20 grows, the particle geometric mean diameters further decrease

    Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation

    Get PDF
    A systematic investigation of electronic configuration and excitation properties is extremely urgent for establishing a guideline to boost H2O2 production with metal single-atom photocatalysts (M-SAPCs). Herein, a series of metal-ion incorporated M-SAPCs was prepared, isolating of three transition metals (Fe, Co, Ni) and two main-group metals (In, Sn) single site by pyridinic N atoms in polymeric carbon nitride (PCN) skeleton. The models in which metal ions are isolated by non-defected g-C3N4 units (Melem_3M) are consistent with the practically prepared M-SAPC in terms of band structures and electronic configurations. Transition density and molecular orbital analysis revealed that the atomically dispersed In (III) and Sn (IV) significantly improve the charge separation with an ideal electronic configuration for the end-on adsorption of oxygen for a boosted 2e−. The experimental charge separation properties and photocatalytic activities of M-SAPC showed good accordance with the computed charge transfer profiles of Melem_3 M, manifesting the rationalities and validities of as-proposed guidelines

    Comparative Analysis of the Phenolic Profile of Lycium barbarum L. Fruits from Different Regions in China

    No full text
    Lycium barbarum L. (LB) fruits have high nutritive values and therapeutic effects. The aim of this study was to comprehensively evaluate the differences in phenolic composition of LB fruits from different geographical regions. Different methods of characterization and statistical analysis of data showed that different geographic sources of China could be significantly separated from each other. The highest total phenolic compound (TPC) content was observed in LB fruits from Ningxia (LBN), followed by those from Gansu (LBG) and Qinghai (LBQ). The Fourier transform infrared (FTIR) spectra of LB fruits revealed that LBQ had a peak at 2972 cm−1 whereas there was no similar peak in LBG and LBQ. A new HPLC method was established for the simultaneous determination of 8 phenolic compounds by quantitative analysis of multiple components by a single marker (QAMS), including 4 phenolic acids (chlorogenic acid, caffeic acid, 4-hydroxycinnamic acid, and ferulic acid), 1 coumarin (scopoletin), and 3 flavonoids (kaempferol-3-O-rutinoside, rutin, and narcissoside). It was showed that rutin was the most dominant phenolic compound in LBQ, although the average content of 4 phenolic acids was also high in LBQ, and scopoletin was the richest in LBG. UHPLC-Q-TOF-MS was used to qualitatively analyze the phenolics, which showed LBN was abundant in phenolic acids, LBQ was rich in flavonoids, and coumarins were the most plentiful in LBG. In conclusion, this study can provide references for the quality control and evaluation of phenolics in LB fruits and their by-products

    miR-26a-5p Regulates Adipocyte Differentiation via Directly Targeting <i>ACSL3</i> in Adipocytes

    No full text
    Preadipocytes become mature adipocytes after proliferation and differentiation, and although many genes and microRNAs have been identified in intramuscular fat, their physiological function and regulatory mechanisms remain largely unexplored. miR-26a-5p has been reported to be related to fat deposition, but its effect on porcine preadipocyte differentiation has not been explored. In this study, bioinformatics analysis and luciferase reporter assay identified that miR-26a-5p binds to the 3ʹUTR of Acyl-CoA synthetase long-chain family member 3 (ACSL3) mRNA. The model for porcine intramuscular preadipocyte differentiation was established to explore the function of miR-6a-5p-ACSL3 on adipocyte differentiation. ACSL3 knockdown markedly reduced the triglycerides (TG) content of cells, as well as the mRNA levels of adipogenic marker genes (PPAR-γ and SREBP-1c). The number of lipid droplets in cells transfected with a miR-26a-5p mimic is significantly reduced, consistent with ACSL3 knockdown results, while the miR-26a-5p inhibitor resulted in opposite results. Taken together, miR-26a-5p is a repressor of porcine preadipocyte differentiation and plays a vital role in ACSL3-mediated adipogenesis.</p

    Using PAMPs and DAMPs as adjuvants in cancer vaccines

    No full text
    Immunotherapy for cancer has attracted considerable attention. As one of the immunotherapeutics, tumor vaccines exert great potential for cancer immunotherapy. The most important components in tumor vaccines are antigens and adjuvants, which determine the therapeutic safety and efficacy, respectively. After decades of research, many types of adjuvants have been developed. Although these adjuvants can induce strong and long-lasting immune responses in tumor immunity, they also cause more severe toxic side effects and are therefore not suitable for use in humans. With the development of innate immunity research, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are receiving more attention in vaccine design. However, whether they have the potential to become new adjuvants remains to be elucidated. The purpose of this review is to provide newideas for the research and development of new adjuvants by discussing the mechanisms and related functions of PAMPs and DAMPs

    Genetic Map Construction and Fiber Quality QTL Mapping Using the CottonSNP80K Array in Upland Cotton

    No full text
    Cotton fiber quality traits are controlled by multiple quantitative trait loci (QTL), and the improvement of these traits requires extensive germplasm. Herein, an Upland cotton cultivar from America, Acala Maxxa, was crossed with a local high fiber quality cultivar, Yumian 1, and 180 recombinant inbred lines (RILs) were obtained. In order to dissect the genetic basis of fiber quality differences between these parents, a genetic map containing 12116 SNP markers was constructed using the CottonSNP80K assay, which covered 3741.81 cM with an average distance of 0.31 cM between markers. Based on the genetic map and growouts in three environments, we detected a total of 104 QTL controlling fiber quality traits. Among these QTL, 25 were detected in all three environments and 35 in two environments. Meanwhile, 19 QTL clusters were also identified, and nine contained at least one stable QTL (detected in three environments for a given trait). These stable QTL or QTL clusters are priorities for fine mapping, identifying candidate genes, elaborating molecular mechanisms of fiber development, and application in cotton breeding programs by marker-assisted selection (MAS)

    Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton

    No full text
    Abstract Background Plant architecture and the vegetative-reproductive transition have major impacts on the agronomic success of crop plants, but genetic mechanisms underlying these traits in cotton (Gossypium spp.) have not been identified. Results We identify four natural mutations in GoCEN-D t associated with cluster fruiting (cl) and early maturity. The situ hybridization shows that GhCEN is preferentially expressed in cotton shoot apical meristems (SAM) of the main stem and axillary buds. Constitutive GhCEN-Dt overexpression suppresses the transition of the cotton vegetative apex to a reproductive shoot. Silencing GoCEN leads to early flowering and determinate growth, and in tetraploids causes the main stem to terminate in a floral bud, a novel phenotype that exemplifies co-adaptation of polyploid subgenomes and suggests new research and/or crop improvement approaches. Natural cl variations are enriched in cottons adapted to high latitudes with short frost-free periods, indicating that mutants of GoCEN have been strongly selected for early maturity. Conclusion We show that the cotton gene GoCEN-Dt, a homolog of Antirrhinum CENTRORADIALIS, is responsible for determinate growth habit and cluster fruiting. Insight into the genetic control of branch and flower differentiation offers new approaches to develop early maturing cultivars of cotton and other crops with plant architecture appropriate for mechanical harvesting

    Anti-synthetase syndrome is associated with a higher risk of hospitalization among patients with idiopathic inflammatory myopathy and COVID-19

    Get PDF
    BackgroundData with fine granularity about COVID-19-related outcomes and risk factors were still limited in the idiopathic inflammatory myopathies (IIMs) population. This study aimed to investigate clinical factors associated with hospitalized and severe COVID-19 in patients with IIMs, particularly those gauged by myositis-specific antibodies.MethodsThis retrospective cohort study was conducted in the Renji IIM cohort in Shanghai, China, under an upsurge of SARS-CoV-2 omicron variant infections from December 2022 to January 2023. Clinical data were collected and analyzed by multivariable logistic regression to determine risk factors. High-dimensional flow cytometry analysis was performed to outline the immunological features.ResultsAmong 463 infected patients in the eligible cohort (n=613), 65 (14.0%) were hospitalized, 19 (4.1%) suffered severe COVID-19, and 10 (2.2%) died. Older age (OR=1.59/decade, 95% CI 1.18 to 2.16, p=0.003), requiring family oxygen supplement (2.62, 1.11 to 6.19, 0.028), patients with anti-synthetase syndrome (ASyS) (2.88, 1.12 to 7.34, 0.027, vs. other dermatomyositis), higher IIM disease activity, and prednisone intake &gt;10mg/day (5.59, 2.70 to 11.57, &lt;0.001) were associated with a higher risk of hospitalization. Conversely, 3-dose inactivated vaccination reduced the risk of hospitalization (0.10, 0.02 to 0.40, 0.001, vs. incomplete vaccination). Janus kinase inhibitor (JAKi) pre-exposure significantly reduced the risk of severe COVID-19 in hospitalized patients (0.16, 0.04 to 0.74, 0.019, vs. csDMARDs). ASyS patients with severe COVID-19 had significantly reduced peripheral CD4+ T cells, lower CD4/CD8 ratio, and fewer naive B cells but more class-switched memory B cells compared with controls.ConclusionASyS and family oxygen supplement were first identified as risk factors for COVID-19-related hospitalization in patients with IIMs. JAKi pre-exposure might protect IIM patients against severe COVID-19 complications
    corecore