9 research outputs found

    Pharmacokinetics-pharmacodynamics of tazobactam in combination with cefepime in an in vitro infection model

    Get PDF
    We previously demonstrated that for tazobactam administered in combination with ceftolozane, the pharmacokinetic-pharmacodynamic (PK-PD) index that best described tazobactam efficacy was the percentage of the dosing interval that tazobactam concentrations were above a threshold (%T>threshold). Using data from studies of Enterobacteriaceae-producing ESBL, a relationship between tazobactam %T>threshold and reduction in log10 CFU from baseline, for which tazobactam threshold concentration was the product of the isolate's ceftolozane-tazobactam MIC value and 0.5, was identified. However, since the kinetics of cephalosporin hydrolysis vary among ESBLs and compounds, it is likely that the translational relationship to derive the tazobactam threshold concentration varies among enzymes and compounds. Using a one-compartment in vitro infection model, the PK-PD of tazobactam administered in combination with cefepime was characterized and a translational relationship across ESBL-producing Enterobacteriaceae was developed. Four clinical isolates, two Escherichia coli and two Klebsiella pneumoniae, known to produce CTX-M-15 β-lactamase enzymes and displaying cefepime MIC values of 2 to 4 mg/L in the presence of 4 mg/L tazobactam, were evaluated. Tazobactam threshold concentrations from 0.0625-1 times the tazobactam-potentiated cefepime MIC value were considered. The threshold that best described the relationship between tazobactam %T>threshold and change in log10 CFU from baseline was the product of 0.125 and the cefepime-tazobactam MIC (R2=0.813). The magnitude of %T>threshold associated with net bacterial stasis and a 1-log10 CFU/mL reduction from baseline at 24 hours was 21.9 and 52.8%, respectively. These data will be useful to support the identification of tazobactam dosing regimens in combination with cefepime for evaluation in future clinical studies

    First-time-in-human study and prediction of early bactericidal activity for GSK3036656, a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment

    Get PDF
    This first-time-in-human (FTIH) study evaluated the safety, tolerability, pharmacokinetics, and food effect of single and repeat oral doses of GSK3036656, a leucyl-tRNA synthetase inhibitor. In part A, GSK3036656 single doses of 5 mg (fed and fasted), 15 mg, and 25 mg and placebo were administered. In part B, repeat doses of 5 and 15 mg and placebo were administered for 14 days once daily. GSK3036656 showed dose-proportional increase following single-dose administration and after dosing for 14 days. The maximum concentration of drug in serum (Cmax) and area under the concentration-time curve from 0 h to the end of the dosing period (AUC0–τ) showed accumulation with repeated administration of approximately 2- to 3-fold. Pharmacokinetic parameters were not altered in the presence of food. Unchanged GSK3036656 was the only drug-related component detected in plasma and accounted for approximately 90% of drug-related material in urine. Based on total drug-related material detected in urine, the minimum absorbed doses after single (25 mg) and repeat (15 mg) dosing were 50 and 78%, respectively. Unchanged GSK3036656 represented at least 44% and 71% of the 25- and 15-mg doses, respectively. Clinical trial simulations were performed to guide dose escalation during the FTIH study and to predict the GSK3036656 dose range that produces the highest possible early bactericidal activity (EBA0–14) in the prospective phase II trial, with consideration of the predefined exposure limit. GSK3036656 was well tolerated after single and multiple doses, with no reports of serious adverse events. (This study has been registered at ClinicalTrials.gov under identifier NCT03075410.

    Population pharmacokinetics of S(−)-carvedilol in healthy volunteers after administration of the immediate-release (IR) and the new controlled-release (CR) dosage forms of the racemate

    No full text
    Carvedilol is a β1-, β1-, and α1-adrenoreceptor blocker indicated for treatment of hypertension and mild-tosevere congestive heart failure. The objective of this study was to develop and evaluate a single population model that describesS(−)-carvedilol pharmacokinetics from both the immediate-release (IR) and the new controlled-release dosage forms of the racemate. Carvedilol IR data (1270 measurements) were obtained from 2 open-label studies (50 mg/25 mg Q12 hours for 2 doses). Carvedilol CR data (2058 measurements) were obtained from an open-label, nonrandomized, dose-rising (10, 20, 40, and 80 mg), 4-period balanced crossover study. All data were simultaneously analyzed using NONMEM V. Leverage analysis and internal evaluations were conducted for the final model. A 2-compartment model with first-order absorption and elimination provided the best fit. The model included different absorption rates (KAs) for the CR and IR morning (IRAM) and evening (IRPM) doses; incorporating change-points at certain times. Estimates of KAs indicated that the absorption was slower at equivalent times and extended for CR relative to IR carvedilol. Oral clearance ofS(−)-carvedilol was 149 L/h. The IRPM and the CR doses had bioavailability (Frel) of 0.80 and 0.76, respectively, relative to the IRAM dose. The inter-subject variability in KAs was lower for the CR dosage form than the original IR dosage form. Estimation of interoccasion variability on KAs and Frel for the CR dosage form improved the fit. The model performed well in simulation and leverage analysis indicated its robustness. The model will be a useful tool for future simulation studies
    corecore