476 research outputs found
Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders
Generative models that learn disentangled representations for different
factors of variation in an image can be very useful for targeted data
augmentation. By sampling from the disentangled latent subspace of interest, we
can efficiently generate new data necessary for a particular task. Learning
disentangled representations is a challenging problem, especially when certain
factors of variation are difficult to label. In this paper, we introduce a
novel architecture that disentangles the latent space into two complementary
subspaces by using only weak supervision in form of pairwise similarity labels.
Inspired by the recent success of cycle-consistent adversarial architectures,
we use cycle-consistency in a variational auto-encoder framework. Our
non-adversarial approach is in contrast with the recent works that combine
adversarial training with auto-encoders to disentangle representations. We show
compelling results of disentangled latent subspaces on three datasets and
compare with recent works that leverage adversarial training
A counterfactual simulation model of causal judgments for physical events
How do people make causal judgments about physical events? We introduce the counterfactual simulation model (CSM) which predicts causal judgments in physical settings by comparing what actually happened with what would have happened in relevant counterfactual situations. The CSM postulates different aspects of causation that capture the extent to which a cause made a difference to whether and how the outcome occurred, and whether the cause was sufficient and robust. We test the CSM in several experiments in which participants make causal judgments about dynamic collision events. A preliminary study establishes a very close quantitative mapping between causal and counterfactual judgments. Experiment 1 demonstrates that counterfactuals are necessary for explaining causal judgments. Participants' judgments differed dramatically between pairs of situations in which what actually happened was identical, but where what would have happened differed. Experiment 2 features multiple candidate causes and shows that participants' judgments are sensitive to different aspects of causation. The CSM provides a better fit to participants' judgments than a heuristic model which uses features based on what actually happened. We discuss how the CSM can be used to model the semantics of different causal verbs, how it captures related concepts such as physical support, and how its predictions extend beyond the physical domain. (PsycInfo Database Record (c) 2021 APA, all rights reserved)
Eye-Tracking Causality
How do people make causal judgments? What role, if any, does counterfactual simulation play? Counterfactual theories of causal judgments predict that people compare what actually happened with what would have happened if the candidate cause had been absent. Process theories predict that people focus only on what actually happened, to assess the mechanism linking candidate cause and outcome. We tracked participants' eye movements while they judged whether one billiard ball caused another one to go through a gate or prevented it from going through. Both participants' looking patterns and their judgments demonstrated that counterfactual simulation played a critical role. Participants simulated where the target ball would have gone if the candidate cause had been removed from the scene. The more certain participants were that the outcome would have been different, the stronger the causal judgments. These results provide the first direct evidence for spontaneous counterfactual simulation in an important domain of high-level cognition
Improve deep learning with unsupervised objective
We propose a novel approach capable of embedding the unsupervised objective into hidden layers of the deep neural network (DNN) for preserving important unsupervised information. To this end, we exploit a very simple yet effective unsupervised method, i.e. principal component analysis (PCA), to generate the unsupervised “label" for the latent layers of DNN. Each latent layer of DNN can then be supervised not just by the class label, but also by the unsupervised “label" so that the intrinsic structure information of data can be learned and embedded. Compared with traditional methods which combine supervised and unsupervised learning, our proposed model avoids the needs for layer-wise pre-training and complicated model learning e.g. in deep autoencoder. We show that the resulting model achieves state-of-the-art performance in both face and handwriting data simply with learning of unsupervised “labels"
Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise
This study presents the results of a series of simulation experiments that
evaluate and compare four different manifold alignment methods under the
influence of noise. The data was created by simulating the dynamics of two
slightly different double pendulums in three-dimensional space. The method of
semi-supervised feature-level manifold alignment using global distance resulted
in the most convincing visualisations. However, the semi-supervised
feature-level local alignment methods resulted in smaller alignment errors.
These local alignment methods were also more robust to noise and faster than
the other methods.Comment: The final version will appear in ICONIP 2018. A DOI identifier to the
final version will be added to the preprint, as soon as it is availabl
A Probabilistic model of meetings that combines words and discourse features
(c) 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This is the author's accepted version of this article. The final published version can be found here: http://dx.doi.org/10.1109/TASL.2008.92586
Generative Invertible Networks (GIN): Pathophysiology-Interpretable Feature Mapping and Virtual Patient Generation
Machine learning methods play increasingly important roles in pre-procedural
planning for complex surgeries and interventions. Very often, however,
researchers find the historical records of emerging surgical techniques, such
as the transcatheter aortic valve replacement (TAVR), are highly scarce in
quantity. In this paper, we address this challenge by proposing novel
generative invertible networks (GIN) to select features and generate
high-quality virtual patients that may potentially serve as an additional data
source for machine learning. Combining a convolutional neural network (CNN) and
generative adversarial networks (GAN), GIN discovers the pathophysiologic
meaning of the feature space. Moreover, a test of predicting the surgical
outcome directly using the selected features results in a high accuracy of
81.55%, which suggests little pathophysiologic information has been lost while
conducting the feature selection. This demonstrates GIN can generate virtual
patients not only visually authentic but also pathophysiologically
interpretable
A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment
Face analysis techniques have become a crucial component of human-machine
interaction in the fields of assistive and humanoid robotics. However, the
variations in head-pose that arise naturally in these environments are still a
great challenge. In this paper, we present a real-time capable 3D face
modelling framework for 2D in-the-wild images that is applicable for robotics.
The fitting of the 3D Morphable Model is based exclusively on automatically
detected landmarks. After fitting, the face can be corrected in pose and
transformed back to a frontal 2D representation that is more suitable for face
recognition. We conduct face recognition experiments with non-frontal images
from the MUCT database and uncontrolled, in the wild images from the PaSC
database, the most challenging face recognition database to date, showing an
improved performance. Finally, we present our SCITOS G5 robot system, which
incorporates our framework as a means of image pre-processing for face
analysis
Superpixel Convolutional Networks using Bilateral Inceptions
In this paper we propose a CNN architecture for semantic image segmentation.
We introduce a new 'bilateral inception' module that can be inserted in
existing CNN architectures and performs bilateral filtering, at multiple
feature-scales, between superpixels in an image. The feature spaces for
bilateral filtering and other parameters of the module are learned end-to-end
using standard backpropagation techniques. The bilateral inception module
addresses two issues that arise with general CNN segmentation architectures.
First, this module propagates information between (super) pixels while
respecting image edges, thus using the structured information of the problem
for improved results. Second, the layer recovers a full resolution segmentation
result from the lower resolution solution of a CNN. In the experiments, we
modify several existing CNN architectures by inserting our inception module
between the last CNN (1x1 convolution) layers. Empirical results on three
different datasets show reliable improvements not only in comparison to the
baseline networks, but also in comparison to several dense-pixel prediction
techniques such as CRFs, while being competitive in time.Comment: European Conference on Computer Vision (ECCV), 201
Lucky or clever? From expectations to responsibility judgments
How do people hold others responsible for the consequences of their actions? We propose a computational model that attributes responsibility as a function of what the observed action reveals about the person, and the causal role that the person's action played in bringing about the outcome. The model first infers what type of person someone is from having observed their action. It then compares a prior expectation of how a person would behave with a posterior expectation after having observed the person's action. The model predicts that a person is blamed for negative outcomes to the extent that the posterior expectation is lower than the prior, and credited for positive outcomes if the posterior is greater than the prior. We model the causal role of a person's action by using a counterfactual model that considers how close the action was to having been pivotal for the outcome. The model captures participants' responsibility judgments to a high degree of quantitative accuracy across three experiments that cover a range of different situations. It also solves an existing puzzle in the literature on the relationship between action expectations and responsibility judgments. Whether an unexpected action yields more or less credit depends on whether the action was diagnostic for good or bad future performance
- …