88 research outputs found

    The 0 and the pi phase Josephson coupling through an insulating barrier with magnetic impurities

    Full text link
    We have studied temperature and field dependencies of the critical current ICI_{C} in the Nb-Fe0.1_{0.1}Si0.9_{0.9}-Nb Josephson junction with tunneling barrier formed by paramagnetic insulator. We demonstrate that in these junctions the co-existence of both the 0 and the π\pi states within one tunnel junction takes place which leads to the appearance of a sharp cusp in the temperature dependence IC(T)I_{C}(T) similar to the IC(T)I_{C}(T) cusp found for the 0−π0-\pi transition in metallic π\pi junctions. This cusp is not related to the 0−π0-\pi temperature induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and π\pi supercurrents through the barrier.Comment: Accepted in Physical Review

    Messenger RNA electroporation: an efficient tool in immunotherapy and stem cell research.

    Get PDF
    Over the last decades medicine has developed tremendously, but still many diseases are incurable. The last years, cellular (gene) therapy has become a hot topic in biomedical research for the potential treatment of cancer, AIDS and diseases involving cell loss or degeneration. Here, we will focus on two major areas within cellular therapy, cellular immunotherapy and stem cell therapy, that could benefit from the introduction of neo-expressed genes through mRNA electroporation for basic research as well as for clinical applications. For cellular immunotherapy, we will provide a state-of-the-art on loading antigen-presenting cells with antigens in the mRNA format for manipulation of T cell immunity. In the area of stem cell research, we will highlight current gene transfer methods into adult and embryonic stem cells and discuss the use of mRNA electroporation for controlling guided differentiation of stem cells into specialized cell lineages

    Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis

    Get PDF
    Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)- doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia (3)overbar(3) over bar d) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd(3-x)Ln(x)Ga(5)O(12), x approximate to 0.3 ( Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+ -doped nanocrystalline GGG samples were measured and analysed

    Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC

    Get PDF
    α Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells

    Cellular immunotherapy for cytomegalovirus and HIV-1 infection

    No full text
    Current antiviral drugs do not fully reconstitute the specific antiviral immune control in chronically human immunodeficiency virus (HIV)-1-infected patients or in cytomegalovirus (CMV)-infected patients after hematopoietic stem cell transplantation. Therefore, immunotherapy in which the patient's immune system is manipulated to enhance antiviral immune responses has become a promising area of viral immunology research. In this review, an overview is provided on the cellular immunotherapy strategies that have been developed for HIV infection and CMV reactivation in immunocompromised patients. As an introduction, the mechanisms behind the cellular immune system and their importance for the development of a workable immunotherapy approach are discussed. Next, the focus is shifted to the immunopathogenesis of CMV and HIV-1 infections to correlate these findings with the concepts and ideas behind the viral-specific immunotherapies discussed. Current and future perspectives of active and passive cellular immunotherapy for the treatment of CMV and HIV-1 infections are reviewed. Finally, pitfalls and key issues with regard to the development of immunotherapy protocols that can be applied in a clinical setting are addressed

    DFNA5: hearing impairment exon instead of hearing impairment gene?

    No full text
    Methods: We performed transfection experiments in mammalian cell lines (HEK293T and COS-1) with green fluorescent protein (GFP) tagged wildtype and mutant DFNA5 and analysed cell death with flow cytometry and fluorescence microscopy. Results: Post-transfection death of HEK293T cells approximately doubled when cells were transfected with mutant DFNA5–GFP compared with wildtype DFNA5–GFP. Cell death was attributed to necrotic events and not to apoptotic events. Conclusion: The transfection experiments in mammalian cell lines support our hypothesis that the hearing impairment associated with DFNA5 is caused by a "gain of function" mutation and that mutant DFNA5 has a deleterious new function
    • 

    corecore