12 research outputs found

    Use of an acellular collagen-elastin matrix to support bladder regeneration in a porcine model of peritoneocystoplasty

    Get PDF
    Bladder reconstruction without using the intestine remains a challenge to this day despite the development of new biomaterials and cell cultures. Human bladder engineering is merely anecdotic, and mostly in vitro and animal studies have been conducted. In our study using a porcine model, we performed a bladder augmentation using an autologous parietal peritoneum graft (peritoneocystoplasty) and determined whether the attachment of an acellular collagen-elastin matrix (Group 1) or lack of (Group 2) had better histologic and functional results. Thus far, peritoneocystoplasty has rarely been performed or combined with a biomaterial. After 6 weeks, we observed different degrees of retraction of the new bladder wall in both groups, although the retraction was lower and the histological analysis showed more signs of regeneration (neoangiogenesis and less fibrosis) in Group 1 than when compared with Group 2. No transitional cells were found in the new bladder wall in any of the groups, and no differences were observed in the functional test results. Performing a peritoneocystoplasty is an easy and safe procedure. The data supports the benefit of an acellular collagen-elastin matrix to reinforce bladder regeneration. However, in our study we observed too much retraction of the new wall and the histologic results were not acceptable to consider it an appropriate cystoplasty technique

    DigiPatICS: Digital Pathology Transformation of the Catalan Health Institute Network of 8 Hospitals—Planification, Implementation, and Preliminary Results

    Get PDF
    Artificial intelligence; Digital pathology; ImplementationInteligencia artificial; Patología digital; ImplementaciónIntel·ligència artificial; Patologia digital; ImplementacióComplete digital pathology transformation for primary histopathological diagnosis is a challenging yet rewarding endeavor. Its advantages are clear with more efficient workflows, but there are many technical and functional difficulties to be faced. The Catalan Health Institute (ICS) has started its DigiPatICS project, aiming to deploy digital pathology in an integrative, holistic, and comprehensive way within a network of 8 hospitals, over 168 pathologists, and over 1 million slides each year. We describe the bidding process and the careful planning that was required, followed by swift implementation in stages. The purpose of the DigiPatICS project is to increase patient safety and quality of care, improving diagnosis and the efficiency of processes in the pathological anatomy departments of the ICS through process improvement, digital pathology, and artificial intelligence tools.This project was funded by European Regional Development Funds, Programa operatiu FEDER de Catalunya 2014–2020 and SA18-014623 DIGIPATICS. UPC activity in this project was partially supported by PID2020-116907RB-I00 and funded by MCIN/AEI/10.13039/501100011033

    DigiPatICS: Digital Pathology Transformation of the Catalan Health Institute Network of 8 hospitals—planification, implementation, and preliminary results

    Get PDF
    Complete digital pathology transformation for primary histopathological diagnosis is a challenging yet rewarding endeavor. Its advantages are clear with more efficient workflows, but there are many technical and functional difficulties to be faced. The Catalan Health Institute (ICS) has started its DigiPatICS project, aiming to deploy digital pathology in an integrative, holistic, and comprehensive way within a network of 8 hospitals, over 168 pathologists, and over 1 million slides each year. We describe the bidding process and the careful planning that was required, followed by swift implementation in stages. The purpose of the DigiPatICS project is to increase patient safety and quality of care, improving diagnosis and the efficiency of processes in the pathological anatomy departments of the ICS through process improvement, digital pathology, and artificial intelligence tools.This project was funded by European Regional Development Funds, Programa operatiu FEDER de Catalunya 2014–2020 and SA18-014623 DIGIPATICS. UPC activity in this project was partially supported by PID2020-116907RB-I00 and funded by MCIN/AEI/10.13039/501100011033Peer ReviewedArticle signat per 18 autors/es: Jordi Temprana-Salvador (1), Pablo López-García (2), Josep Castellví Vives (1),Lluís de Haro (2), Eudald Ballesta (2), Matias Rojas Abusleme (3), Miquel Arrufat (4), Ferran Marques (5), Josep R. Casas (5),Carlos Gallego (6), Laura Pons (7), José Luis Mate (7), Pedro Luis Fernández (7), Eugeni López-Bonet (8), Ramon Bosch (9), Salomé Martínez (10), Santiago Ramón y Cajal (1), and Xavier Matias-Guiu (11,12) // (1) Department of Pathology, Vall d’Hebron University Hospital, CIBERONC, 08035 Barcelona, Spain; (2) Functional Competence Center, Information Systems, Catalan Health Institute (Institut Català de la Salut), 08006 Barcelona, Spain; (3) Center for Telecommunications and Information Technology (Centre de Telecomunicacions i Tecnologies de la Informació, CTTI), Catalan Health Institute (Institut Català de la Salut), 08006 Barcelona, Spain; (4) Economic and Financial Management, Catalan Health Institute (Institut Català de la Salut), 08006 Barcelona, Spain; (5) Image Processing Group, Technical University of Catalonia (UPC), 08034 Barcelona, Spain; (6) Digital Medical Imaging System of Catalonia (SIMDCAT), TIC Salut, 08005 Barcelona, Spain, (7) Department of Pathology, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (8) Department of Pathology, Doctor Josep Trueta Hospital of Girona, 17007 Girona, Spain; (9) Department of Pathology, Verge de la Cinta Hospital of Tortosa, 43500 Tarragona, Spain; (10) Department of Pathology, Joan XXIII University Hospital of Tarragona, 43005 Tarragona, Spain; (11) Department of Pathology, Arnau de Vilanova University Hospital, 25198 Lleida, Spain, (12) Department of Pathology, Bellvitge University Hospital, CIBERONC, 08907 Barcelona, SpainPostprint (published version

    Changes in the microbiological diagnosis and epidemiology of cutaneous leishmaniasis in real-time PCR era: A six-year experience in a referral center in Barcelona

    Get PDF
    Leishmania; Reacción en cadena de la polimerasa; EspañaLeishmania; Polymerase chain reaction; SpainLeishmania; Reacció en cadena de la polimerasa; EspanyaBackground Leishmaniasis is a neglected disease caused by different species of the protozoa Leishmania spp. Cutaneous lesions are the most common clinical manifestation. This disease is prevalent in tropical and subtropical areas, including the Mediterranean basin. In Spain, Leishmania (L.) infantum is the only endemic species, but imported cases are often diagnosed. Different classical parasitological methods can be performed for cutaneous leishmaniasis (CL) diagnosis; but currently molecular techniques serve as a relevant tool for the detection and characterization of Leishmania parasites. We aimed to evaluate clinical and epidemiological characteristics of CL diagnosed patients by real-time PCR in a tertiary hospital over a six-year period. Methodology/Principal findings Clinical, epidemiological and microbiological data were retrospectively collected and analyzed. In our study, CL was confirmed in 59 (31.4%) out of 188 patients by real-time PCR, showing an increase over recent years: 11 cases of CL between 2014 and 2016 and 48 between 2017 and 2019. Real-time PCR was performed on skin swabs and/or biopsies samples, with a positivity of 38.5% and 26.5%, respectively. Results were 100% concordant when biopsy and skin swab were performed simultaneously. L. (L.) infantum was the most frequent species detected (50%), followed by L. (L.) major (45%) and Viannia subgenus (5%), which were detected only in imported cases. L. (L.) major was almost entirely detected in travelers/migrants from Morocco. Multiple and atypical skin lesions were more common in imported cases than in autochthonous cases (44.4% vs. 21.8%). Conclusions/Significance An increase in both autochthonous and imported CL cases has been observed in past years in our hospital. Molecular techniques assist in improving CL diagnosis and characterization of the Leishmania species, mainly in imported cases.The author(s) received no specific funding for this work

    TSPAN1 : a Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance

    Get PDF
    Altres ajuts: This work was supported by grants from the Instituto de Salud Carlos III, Ayudas a Grupos PCTI Principado de Asturias (IDI2018/155 to J.P.R.), co-financed by the European Regional Fund (ERDF) and AECC (Spanish Association of Cancer Research) Founding Ref. GC16173720CARR (M.E.L.). Y.G.-M. and C.M. were granted by the VHIR and iP-FIS (ISCIII) fellowships respectively.Sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients. TSPAN1 depletion in parental and CDDP-resistant HNSCC cells reduced cell proliferation, induced apoptosis, decreased autophagy, sensitized to chemotherapeutic agents and inhibited several signaling cascades, with phospho-SRC inhibition being a major common target. Moreover, TSPAN1 depletion in vivo decreased the size and proliferation of parental and CDDP-resistant tumors and reduced metastatic spreading. Notably, CDDP-resistant tumors showed epithelial-mesenchymal transition (EMT) features that disappeared upon TSPAN1 inhibition, suggesting a link of TSPAN1 with EMT and metastasis. Immunohistochemical analysis of HNSCC specimens further revealed that TSPAN1 expression was correlated with phospho-SRC (pSRC), and inversely with E-cadherin, thus reinforcing TSPAN1 association with EMT. Overall, TSPAN1 emerges as a novel oncogenic protein and a promising target for HNSCC therapy

    Use of an acellular collagen-elastin matrix to support bladder regeneration in a porcine model of peritoneocystoplasty

    No full text
    Bladder reconstruction without using the intestine remains a challenge to this day despite the development of new biomaterials and cell cultures. Human bladder engineering is merely anecdotic, and mostly in vitro and animal studies have been conducted. In our study using a porcine model, we performed a bladder augmentation using an autologous parietal peritoneum graft (peritoneocystoplasty) and determined whether the attachment of an acellular collagen-elastin matrix (Group 1) or lack of (Group 2) had better histologic and functional results. Thus far, peritoneocystoplasty has rarely been performed or combined with a biomaterial. After 6 weeks, we observed different degrees of retraction of the new bladder wall in both groups, although the retraction was lower and the histological analysis showed more signs of regeneration (neoangiogenesis and less fibrosis) in Group 1 than when compared with Group 2. No transitional cells were found in the new bladder wall in any of the groups, and no differences were observed in the functional test results. Performing a peritoneocystoplasty is an easy and safe procedure. The data supports the benefit of an acellular collagen-elastin matrix to reinforce bladder regeneration. However, in our study we observed too much retraction of the new wall and the histologic results were not acceptable to consider it an appropriate cystoplasty technique

    TSPAN1: A Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance

    Get PDF
    Apoptosi; Cèl·lules mare del càncer; ResistènciaApoptosis; Células madre cancerosas; ResistenciaApoptosis; Cancer stem cells; ResistanceSensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients. TSPAN1 depletion in parental and CDDP-resistant HNSCC cells reduced cell proliferation, induced apoptosis, decreased autophagy, sensitized to chemotherapeutic agents and inhibited several signaling cascades, with phospho-SRC inhibition being a major common target. Moreover, TSPAN1 depletion in vivo decreased the size and proliferation of parental and CDDP-resistant tumors and reduced metastatic spreading. Notably, CDDP-resistant tumors showed epithelial–mesenchymal transition (EMT) features that disappeared upon TSPAN1 inhibition, suggesting a link of TSPAN1 with EMT and metastasis. Immunohistochemical analysis of HNSCC specimens further revealed that TSPAN1 expression was correlated with phospho-SRC (pSRC), and inversely with E-cadherin, thus reinforcing TSPAN1 association with EMT. Overall, TSPAN1 emerges as a novel oncogenic protein and a promising target for HNSCC therapy.This work was supported by grants from the Instituto de Salud Carlos III (ISCIII): PI15/01262 (M.E.LL.) PI19/00560 (J.M.G.-P.) and CP03/00101 (M.E.L.), CIBERONC (CB16/12/00390 to J.P.R.), Ayudas a Grupos PCTI Principado de Asturias (IDI2018/155 to J.P.R.), co-financed by the European Regional Fund (ERDF) and AECC (Spanish Association of Cancer Research) Founding Ref. GC16173720CARR (M.E.L.). Y.G.-M. and C.M. were granted by the VHIR and iP-FIS (ISCIII) fellowships respectively

    Insight into the Role and Regulation of Gap Junction Genes in Lung Cancer and Identification of Nuclear Cx43 as a Putative Biomarker of Poor Prognosis

    Get PDF
    Direct intercellular communication, mediated by gap junctions formed by the connexin transmembrane protein family, is frequently dysregulated in cancer. Connexins have been described as tumour suppressors, but emerging evidence suggests that they can also act as tumour promoters. This feature is connexin- and tissue-specific and may be mediated by complex signalling pathways through gap junctions or hemichannels or by completely junction-independent events. Lung cancer is the number one cancer in terms of mortality worldwide, and novel biomarkers and therapeutic targets are urgently needed. Our objective was to gain a better understanding of connexins in this setting. We used several in silico tools to analyse TCGA data in order to compare connexin mRNA expression between healthy lung tissue and lung tumours and correlated these results with gene methylation patterns. Using Kaplan-Meier plotter tools, we analysed a microarray dataset and an RNA-seq dataset of non-small cell lung tumours in order to correlate connexin expression with patient prognosis. We found that connexin mRNA expression is frequently either upregulated or downregulated in lung tumours. This correlated with both good and poor prognosis (overall survival) in a clear connexin isoform-dependent manner. These associations were strongly influenced by the histological subtype (adenocarcinoma versus squamous cell carcinoma). We present an overview of all connexins but particularly focus on four isoforms implicated in lung cancer: Cx26, Cx30.3, Cx32 and Cx43. We further analysed the protein expression and localization of Cx43 in a series of 73 human lung tumours. We identified a subset of tumours that exhibited a unique strong nuclear Cx43 expression pattern that predicted worse overall survival (p = 0.014). Upon sub-stratification, the prognostic value remained highly significant in the adenocarcinoma subtype (p = 0.002) but not in the squamous carcinoma subtype (p = 0.578). This finding highlights the importance of analysis of connexin expression at the protein level, particularly the subcellular localization. Elucidation of the underlying pathways regulating Cx43 localization may provide for novel therapeutic opportunities

    TSPAN1 : a Novel Protein Involved in Head and Neck Squamous Cell Carcinoma Chemoresistance

    No full text
    Altres ajuts: This work was supported by grants from the Instituto de Salud Carlos III, Ayudas a Grupos PCTI Principado de Asturias (IDI2018/155 to J.P.R.), co-financed by the European Regional Fund (ERDF) and AECC (Spanish Association of Cancer Research) Founding Ref. GC16173720CARR (M.E.L.). Y.G.-M. and C.M. were granted by the VHIR and iP-FIS (ISCIII) fellowships respectively.Sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. A proteomic study revealed tetraspanin-1 (TSPAN1) as a protein involved in acquisition of cisplatin (CDDP) resistance (Data are available via ProteomeXchange with identifier PXD020159). TSPAN1 was found to increase in CDDP-resistant cells, CSCs and biopsies from head and neck squamous cell carcinoma (HNSCC) patients. TSPAN1 depletion in parental and CDDP-resistant HNSCC cells reduced cell proliferation, induced apoptosis, decreased autophagy, sensitized to chemotherapeutic agents and inhibited several signaling cascades, with phospho-SRC inhibition being a major common target. Moreover, TSPAN1 depletion in vivo decreased the size and proliferation of parental and CDDP-resistant tumors and reduced metastatic spreading. Notably, CDDP-resistant tumors showed epithelial-mesenchymal transition (EMT) features that disappeared upon TSPAN1 inhibition, suggesting a link of TSPAN1 with EMT and metastasis. Immunohistochemical analysis of HNSCC specimens further revealed that TSPAN1 expression was correlated with phospho-SRC (pSRC), and inversely with E-cadherin, thus reinforcing TSPAN1 association with EMT. Overall, TSPAN1 emerges as a novel oncogenic protein and a promising target for HNSCC therapy
    corecore