11 research outputs found

    A dynamic convergence control scheme for the solution of the radial equilibrium equation in through-flow analyses

    Get PDF
    One of the most frequently encountered numerical problems in scientific analyses is the solution of non-linear equations. Often the analysis of complex phenomena falls beyond the range of applicability of the numerical methods available in the public domain, and demands the design of dedicated algorithms that will approximate, to a specified precision, the mathematical solution of specific problems. These algorithms can be developed from scratch or through the amalgamation of existing techniques. The accurate solution of the full radial equilibrium equation (REE) in streamline curvature (SLC) through-flow analyses presents such a case. This article discusses the development, validation, and application of an 'intelligent' dynamic convergence control (DCC) algorithm for the fast, accurate, and robust numerical solution of the non-linear equations of motion for two-dimensional flow fields. The algorithm was developed to eliminate the large extent of user intervention, usually required by standard numerical methods. The DCC algorithm was integrated into a turbomachinery design and performance simulation software tool and was tested rigorously, particularly at compressor operating regimes traditionally exhibiting convergence difficulties (i.e. far off-design conditions). Typical error histories and comparisons of simulated results against experimental are presented in this article for a particular case study. For all case studies examined, it was found that the algorithm could successfully 'guide' the solution down to the specified error tolerance, at the expense of a slightly slower iteration process (compared to a conventional Newton-Raphson scheme). This hybrid DCC algorithm can also find use in many other engineering and scientific applications that require the robust solution of mathematical problems by numerical instead of analytical means

    The effect of upstream duct boundary layer growth and compressor blade lean angle variation on an axial compressor performance

    Get PDF
    The compressor of a gas turbine engine is extremely vulnerable on upstream duct- induced flow non-uniformities whether the duct is an engine intake or an interconnecting duct. This is justified by its position being literally an extension of the duct flow path, coupled to the fact that it operates under adverse pressure gradients. In particular, this study focuses on performance deviations between installed and uninstalled compressors. Test results acquired from a test bed installation will differ from those recorded when the compressor operates as an integral part of an engine. The upstream duct, whether an engine intake or an inter-stage duct, will affect the flow-field pattern ingested into the compressor. The case study presented here aims mostly at qualifying the effect of boundary layer growth along the upstream duct wall on compressor performance. Additionally, the compressor performance response on blade lean angle variation is also addressed, with the aim of acquiring an understanding as to how compressor blade lean angle changes interact with intake-induced flow non-uniformities. Such studies are usually conducted as part of the preliminary design phase. Consequently, experimental performance investigation is excluded at this stage of development, and therefore, computer-aided simulation techniques are used if not the only option for compressor performance prediction. Given the fact that many such design parameters need to be assessed under the time pressure exerted by the tight compressor development programme, the compressor flow simulation technique needs to provide reliable results while consuming the least possible computational time. Such a low computational time compressor flow simulation method, among others, is the two-dimensional streamline curvature (SLC) method, being also applied within the frame of reference of the current study. The paper is introduced by a brief discussion on SLC method. Then, a reference is made to the radial equilibrium equation, which is the mathematical basis of SOCRATES, a turbomachinery flow simulation tool that was used in this study. Subsequently, the influence of the upstream duct on the compressor inlet radial flow distribution is being addressed, with the aim of adjusting the compressor blade inlet lean angle, in order to minimize compressor performance deterioration. The paper concludes with a discussion of the results

    Gas turbine performance with distorted inlet flow

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Characterisation of the Uncertainties of the Operating Conditions in Turbomachinery Design

    No full text
    In computational engineering design the robust analysis comprises a prerequisite towards the successful development of future gas turbines. However, reliable determination of the statistical characteristics of variation of the operating conditions in a turbomachine is crucial. Initially, the variability of the physical operating conditions along the operating line on the compressor map is developed with the assistance of a throughflow analysis tool. The probability density functions of the variability of the pressure profiles, mass flow, input angles, etc. of each individual stage of the compressor can be extracted and processed accordingly for 3D aerodynamic shape robust design. In this way, flexibility in detailed design is developed leading to innovative and creative thinking in modern turbomachinery design, but at the same time the intelligence and level of robust design is improved, and hence the quality of the designed product. For a particular compression system of a turbo-shaft engine all the details can be extracted, along the whole operating line, covering all the possible scenarios of individual operating conditions of each component. With this methodology the appropriate information is developed for robust analysis at the preliminary or detailed design phases of a compression system

    A subset of highly responsive transcription factors upon tomato infection by pepino mosaic virus

    No full text
    Plants have evolved well-tuned surveillance systems, including complex defence mechanisms, to constrain pathogens. TFs are master regulators of host molecular responses against plant pathogens. While PepMV constitutes a major threat to the global tomato production, there is still a lack of information on the key TFs that regulate host responses to this virus. A combinatorial research approach was applied relying on tomato transcriptome analysis, RT-qPCR validation, phylogenetic classification, comparative analysis of structural features, cis-regulatory element mining and in silico co-expression analysis to identify a set of 11 highly responsive TFs involved in the regulation of host responses to PepMV. An endemic PepMV isolate, generating typical mosaic symptoms, modified expression of ca. 3.3% of tomato genes, resulting in 1,120 DEGs. Functional classification of 502 upregulated DEGs revealed that photosynthesis, carbon fixation and gene silencing were widely affected, whereas 618 downregulated genes had an impact mainly on plant defence and carotenoid biosynthesis. Strikingly, all 11 highly responsive TFs carried abiotic stress response cis-regulatory elements, whereas five of them were better aligned with rice than with Arabidopsis gene homologues, suggesting that plant responses against viruses may predate divergence into monocots and dicots. Interestingly, tomato C2H2 family TFs, ZAT1-like and ZF2, may have distinct roles in plant defence due to opposite response patterns, similar to their Arabidopsis ZAT10 and ZAT12 homologues. These highly responsive TFs provide a basis to study in-depth molecular responses of the tomato–PepMV pathosystem, providing a perspective to better comprehend viral infections

    Environmental conditions affecting ochratoxin a during solar drying of grapes: The case of tunnel and open air-drying

    No full text
    Drying optimization, to mitigate fungal growth and Ochratoxin A (OTA) contamination is a key topic for raisin and currant production. Specific indicators of environmental conditions and drying properties were analyzed using two seedless grape varieties (Crimson—red and Thompson— white), artificially inoculated with Aspergillus carbonarius under open air and tunnel drying. The air temperature (T), relative humidity, grape surface temperature (Ts ) and water activity throughout the drying experiment, the grapes’ moisture content and the fungal colonization and OTA contamination during the drying process and their interactions were recorded and critically analyzed. Drying properties such as the water diffusivity (Deff ) and peel resistance to water transfer were estimated. The grapes Ts was 5–7◦C higher in tunnel vs. open air–drying; the infected grapes had higher maximum Ts vs. the control (around 4–6◦C). OTA contamination was higher in tunnel vs. open air–dried grapes, but fungal colonies showed the opposite trend. The Deff was higher in tunnel than in the open air–drying by 54%; the infected grapes had more than 70% higher Deff than the control, differences explained by factors affecting the water transport. This study highlighted CFU and OTA indicators that affect the water availability between red and white grapes during open air and tunnel drying, estimated by the Deff and peel resistance. This raises new issues for future research
    corecore