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Abstract: One of the most frequently encountered numerical problems in scientific analyses is the solution of non-
linear equations. Often the analysis of complex phenomena falls beyond the range of applicability of the numerical 
methods available in the public domain, and demands the design of dedicated algorithms that will approximate, to 
a specified precision, the mathematical solution of specific problems. These algorithms can be developed from 
scratch or through the amalgamation of existing techniques. The accurate solution of the full Radial Equilibrium 
Equation (REE) in Streamline Curvature (SLC) through-flow analyses presents such a case. This manuscript 
discusses the development, validation and application of an ‘intelligent’ Dynamic Convergence Control (DCC) 
algorithm for the fast, accurate and robust numerical solution of the non-linear equations of motion for two-
dimensional flow fields. The algorithm was developed to eliminate the large user intervention, usually required by 
standard numerical methods. The DCC algorithm was integrated into a turbomachinery design and performance 
simulation software tool and was tested rigorously, particularly at compressor operating regimes traditionally 
exhibiting convergence difficulties (i.e. far off-design conditions). Typical error histories and comparisons of 
simulated results against experimental are presented in this manuscript for a particular case-study. For all case-
studies examined, it was found that the algorithm could successfully ‘guide’ the solution down to the specified 
error tolerance, at the expense of a slightly slower iteration process (compared to a conventional Newton-Raphson 
scheme). This hybrid DCC algorithm can also find use in many other engineering and scientific applications that 
require the robust solution of mathematical problems by numerical, instead of analytical means. 
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1   INTRODUCTION 
 
Numerical methods are usually based on calculating an 

approximation to the true value of a root of the equation 
  0xf  and then successively refining this approximation 

until further refining would achieve no useful purpose [1]. 
Also included in this type of problem is the determination of 
the points of intersection of two curves.  
------------------------------------------------------------------------------------------------ 
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If the curves are represented by functions  xf  and  xg  
respectively, the intersection points correspond to the roots of 
the function      xgxfxF  . The vast majority of the 
root-solving techniques available today is of this iterative 
nature. An initial guess for the root is specified, or an interval 
that is known to contain a root, and the various numerical 
schemes will return an improved guess or a more limited 
interval. The same procedure is then repeated using the new 
values until a root of desired accuracy is obtained or until the 
method encounters difficulties and fails. Although some of the 
schemes are guaranteed to find a root eventually, they may take 
considerable computer time to arrive at the answer. On the 
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other hand, faster schemes may be able to converge to a root 
quicker, but tend to be susceptible to problems of divergence 
[2].  

The physical characteristics of the computational platform 
used, as well as the nature itself of the problem being solved, 
can impose major limitations on the numerical scheme 
applied, and ultimately determine its success or failure. The 
effects of these constraints need to be both predictable and 
controllable. An excellent introduction to the theory of 
numerical analysis is given in references [3, 4]. References [5-
7] cover the detailed aspects of more involved computational 
techniques, their range of applicability and their limitations. 
The practical application of numerical analyses by means of 
computer algorithms is covered well in [8-10]. To facilitate the 
solution of specific mathematical problems, e.g. the solution of 
the full REE in through-flow analyses, computer algorithms 
such as those described in [11-15] for numerical integration, or 
the solution of partial differential equations, can provide useful 
inspiration for the development of more advanced, hybrid 
computational techniques. 
 
 
1.1   Solution of the REE in Through-Flow Analyses  

 
The SLC through-flow method basically considers the 

flow within the compressor as axi-symmetric, compressible 
and inviscid. It solves the discrete equations of continuity, 
motion, energy and state in a form that incorporates the full 
three-dimensional compressor geometry and on a 
computational grid which is constructed in the meridional 
plane. After the transformation of the discrete equations and 
the solution of a system of equations, the result is a non-linear 
partial differential equation known as the REE [16]. This 
equation represents the gradient of the meridional velocity in 
the span-wise direction and needs to be solved by a finite 
difference approximation via an iterative approach.  

Equation 1 represents the most general form of the REE 
[17] for the case of axi-symmetric inviscid flow, and can be 
used to describe the flow both into and out of stator and rotor 
blade rows with minor alterations (i.e. for stators relative 
velocity terms are replaced by the absolute velocity terms, the 
relative angle β is replaced by the absolute angle α and the 
rotational speed is set to zero). 
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Equation 1 is a second order differential equation that can be 
broken down into the following terms: 
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Substituting, Equation 1 can be reduced to: 

 

CBVAV
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In this case the solution of the equation has as follows: 
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The constant of integration c can be calculated by applying 
equation 6 for two consecutive stream-lines as below:  
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The terms A, B and C contain, apart from certain flow 

parameters, derivatives along the s  and m  directions. In order 
to specify an initial value for the derivative terms, a flow 
pattern including all the related parameters has to be assumed 
throughout the compressor. Moreover, the derivatives along the 
s  direction at certain streamline locations can only be updated 
once the meridional velocity profile is obtained at the 
corresponding plane (this can be the leading or the trailing 
edge of a blade). On the other hand, in order for the 
meridional derivatives to be updated, the meridional velocity 
profile of the entire compressor needs to be determined first.  

In order to start the iteration, computation nodes can be 
defined for example at the intersections of the streamlines and 
the blade edges. Obviously, at the beginning, node coordinates 
are unknown since the streamline positions have not been 
determined yet. A certain radial position for the streamlines is 
assumed throughout the compressor’s effective flow area, as 
well as a certain meridional velocity distribution. Then, a 
meridional velocity profile is defined along every compressor 
blade leading and trailing edge, such as to satisfy both the REE 
and the mass flow continuity. In order to achieve this double 
convergence, a meridional velocity profile is determined first, 
based on an arbitrary value of meridional velocity at a certain 
compressor height and then it is successively recalculated until 
all the streamtube mass flows are satisfied. The REE basically 
reflects the equation of the pressure forces to the inertial 
forces. Stream-tubes that contain a fixed amount of mass, as 
they are confined between two streamlines, are successively 
refined regarding their radial position in order for the REE to 
be satisfied.  

The overall solution process is obviously not a straight 
forward one and is largely based on a trial and error approach, 
involving usually a large number of iterative loops, both nested 
and crossing over. The whole iterative scheme is by default 

very complicated and potentially troublesome, especially as far 
as specifying initial conditions and maintaining a stable and 
robust convergence is concerned. 

During the forty years approximately of the existence of 
the SLC method, numerous authors have proposed several 
variations of the SLC calculation scheme [18-24]. All these 
different schemes were mainly influenced by the type of the 
turbomachine the method was applied to (radial or axial), the 
nature of the flow being considered (subsonic or supersonic) 
and the level up to which the flow viscosity and 
circumferential in-homogeneities were taken into account. In 
many cases, the various calculation schemes were also 
influenced by the particular characteristics of the cascade, such 
as hub to tip ratio, or lean and sweep angle distributions [25]. 
Nevertheless, in all these publications very little is usually 
mentioned as to the actual numerical scheme or algorithm 
being used to facilitate convergence. Perhaps, some more 
useful information can be obtained from [26-29], but again not 
sufficient in its own merit for a wider application in a more 
generic context. 

The authors of this manuscript have included the next two 
sections (Section 1.2 and Section 1.3) in order to capture in a 
synopsis the reasons behind this work and make this document 
easier to follow.  
 
 
1.2   Newton’s Method - Background and Overview 

 
Newton’s (or the Newton-Raphson) method can usually be 

relied upon to find a solution quickly and accurately [30]. It is 
used routinely in the solution of complex engineering and 
scientific problems, as well as in through-flow calculations. In 
its pure form, it derives from the Taylor series for the 
function  xf . 
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If 0xx   is small enough, only a few terms in the above 
series need to be retained. To find a root of the function, an x  
needs to be identified such that   0xf  or : 
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If it is assumed that the desired root x  is near the value 0x , 
then: 

     00
0

0 xx
dx
dfxfxf

x

              (10) 

If x  is not near 0x  this may not even be approximately true. 
In the last equation everything except x  (the root) is known 
and so we can solve for x  considering that dxdff / . The 
last equation then becomes: 
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If 0xx   is indeed small, then the last equation will be a good 

estimate of the actual root of the function. But if 0xx   is not 
small, then the solution will lie far from the actual root of the 
function. Replacing the function  xf  by the first two terms in 
its Taylor series approximates the function by a straight line 
through the point ( 0x ,  0xf ), which has the same slope as 
the tangent to the curve at that point (Fig. 1). Then setting this 
approximation to  xf  = 0, gives the point where the line 
intersects the axis. Although the value generated is closer to 
the actual root than was the starting point 0x , this procedure 

will not in general give the actual root of  xf  in one 
iteration. Newton’s method simply consists of repeating this 
process. That is, starting from an initial guess for the root of 
 xf , say 0x , calculate an improved guess 1x , and then use 

the improved value 1x  for the root in the next cycle to 
calculate a new improvement on the root. 
 

 
Fig. 1 The Newton-Raphson iteration scheme 
 
 
1.3   Newton’s Method - Limitations 

 
Newton’s method attempts to find a root of a function 

 xf  by repeatedly approximating the function by straight 
lines. Compared to other numerical schemes, this method 
incorporates a lot of information about the behaviour of the 
function into the root-solving algorithm. Specifically, the 
method monitors at each step not only the value of the function 
but also its slope (the derivative of the function). It is this 
particular feature that results in a dramatic improvement in the 

rate of convergence. However, Newton’s method differs from 
other procedures in that it does not guarantee that a root will 
be found in all cases, and hence, it will often tend to diverge or 
completely fail, especially when applied to complex functions 
having an unpredictable behaviour. There are a few potential 
problems that can cause the method to fail. These are 
explained and also graphically illustrated in the following 
figures (Figs. 2-5). First of all, if the slope of the function is 
nearly horizontal and the initial guess of 0x is so poor that 

 0xf   is very small, the first iteration may be thrown out of 
the region of interest and the solution would then diverge (Fig. 
2). Also, the method will likely fail if the initial guess is in a 
region where the function has a local minimum but no root 
(Fig. 3). 

 

 
Fig. 2 A horizontal slope may cause a failure 
 

Moreover, the method will not be able to find a root 
whenever the derivative at the root is infinite (Fig. 4). The 
method would also have difficulties with multiple roots, as 
Figure 5 illustrates. At the position of a multiple root, both 
 xf  and  0xf   become nearly zero and therefore the 

algorithm would exhibit a very slow convergence and 
ultimately fail when attempting to divide zero by zero. 
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Fig. 3 A local minimum may cause a failure 

 

 
Fig. 4 A vertical slope near a root may cause a failure 
 

 
Fig. 5 A multiple root may cause a failure 
 

2   THE HYBRID DCC ALGORITHM 
 
In all numerical schemes potential computational 

difficulties of any nature can be avoided by gathering as much 
information as possible in the initial choice of the method used 
and the accompanying initial guess. Also a rough 
understanding of the behavior of the function itself should be 
obtained (analytically or graphically) before root solving is 
attempted. In practice however, the exact nature of the function 
is usually unknown. In these cases, Newton’s method in its 
original form as described previously, can not work and a 
different method, or combination of methods, requiring less 
initial information about the nature of the function being 
solved, needs to be implemented. Moreover, a method of 
monitoring the function needs to be utilized to arrive at some 
understanding of how the function is behaving during 
computation.  

This is the general approach taken by the work reported 
here. The hybrid DCC algorithm is largely based on Newton’s 
method but addresses effectively the inherent limitations of the 
method described in Section 1.3. It also combines the speed of 
execution of the method with a slower, but more robust 
numerical scheme which is only employed while the solution is 
close to the true root and when numerical instabilities are 
encountered. Furthermore, the algorithm includes a 
monitoring facility that can track the evolution of errors 
generated during successive iterations and take appropriate 
intervening action during run-time. More specifically the 
algorithm: 
 Dynamically monitors the convergence history of the 

various iterative processes during code execution 
 Automatically detects the nature of the convergence mode 

that the solution has fallen into (i.e. stable convergence, 
divergence, various types of numerical oscillations etc.) 

 Dynamically changes the numerical scheme employed and 
also the rate of convergence according to the detected 
mode 

 Traps diverging iterations and attempts to return the 
solution to steady convergence, hence preventing it from 
diverging any further 

 Prevents the software from crashing due to numerical 
instabilities 

 Dynamically ‘drives’ the solution down to the specified 
error tolerance by intervening appropriately throughout 

 Informs the user when a particular solution has steadily 
converged above the specified error tolerance and prompts 
for action 

 When a particular iteration converges below the specified 
error tolerance, it automatically resets all initial settings 
back to their default values for the monitoring of the next 
iterative process  

More details are given in the following section.  
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2.1   Algorithm Inner-Workings 

 
As discussed previously, Newton’s method requires the 

values of the function itself, as well as the values of the first 
derivative of the function. Calculating the derivative of 
Equation 1 or Equation 7 can be extremely computationally 
expensive (if not impossible). Finding the solution of this 
function is also only an incidental part of a much larger 
problem and not the sole objective of a through-flow 
computation.  

We could therefore adopt an easier strategy and replace 
the derivative with an estimate, obtained numerically from the 
slope of the line joining the last two iterates. The point where 
this line, called the ‘secant’ (hence the name of this method), 
cuts the x-axis is taken to be the next iterate. This approach 
requires two values of x  to start the iteration. These two 
values of x  can be closely spaced together and need not to be 
bracketing the root. In other words, specifying these two initial 
guesses should not be difficult at all. An approximate 
expression of the derivative can be obtained, for example, from 
the first backward difference as follows: 
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Using Equation 12, Equation 11 can then be modified 
accordingly. 

Since the ‘secant’ method is based on Newton’s method it 
will exhibit similar vulnerabilities and tendency to fail in those 
cases discussed in Section 1.3. First of all, the slow 
convergence rate at multiple roots can be addressed as follows. 
Newton’s method will fail at a multiple root because of the 
operation of dividing zero by zero, a forbidden operation on 
any computer. In mathematics however, the operation 0/0 is 
not forbidden; it is simply an undetermined form (neither 0 nor 
infinity). It has no numerical value until it is defined to be a 
specific value in a particular problem [30]. In addition to 
suffering from a slow convergence rate for multiple roots, 
Newton’s method may yield a result that is invalidated by 
round-off errors caused when both the value of the function 
and its derivative are extremely small. 

Amending the previous procedure, if we consider for 
example the following simple function  xf  that has a 
multiple root of multiplicity m  at rx  , we can write:   
 
     xgrxxf m               (13) 

 
Since the value of r is yet unknown,  xg  is likewise 

unknown. We can, however, assume that  xg  is not zero (or 

extremely small) at rx  . Then applying Newton’s method 
with an initial guess of 0x  near r , we have: 
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The assumptions made regarding 0x  and  xg  ensure that the 
first term in the brackets in the last equation is much larger 
than the second. Thus we can approximate this equation as:  
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Solving this for the root r , we obtain: 
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This is almost the same as the original Newton algorithm, with 
the replacement  ffxx  /  becoming  ffmxx  /  
for a function with a root of multiplicity m . With this simple 
amendment to Newton’s method the desired convergence rate 
is restored. 

As mentioned previously, the other inherent limitations of 
Newton’s method have been addressed through the 
implementation of an error monitoring facility and a more 
robust numerical scheme. This additional numerical scheme, 
being somewhat slower, is employed only towards the last 
stages of convergence, when a solution is found to orbit 
dangerously around a root, and when numerical instabilities 
are encountered. More specifically, at the beginning of an 
iteration, generated errors are stored in a memory register. 
After a specified number of loops this error history is 
examined by the algorithm and unless the convergence process 
is stable, the Newton-Raphson/Secant numerical scheme 
switches to: 
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Where relaxf  is a relaxation factor and rootf  is the target 
solution. For example, when applying this scheme for the 
solution of the REE, rootf  becomes a particular s (or s  
coordinate) in the tangential direction along the blade span, 
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and 1x becomes a meridional velocity value that can satisfy the 
REE at that particular coordinate. 

When the iteration does not reach convergence after a 
specified number of loops, relaxf needs to be reduced. 
Similarly, if successive iterates are found to oscillate around a 
solution, relaxf  is reduced again to help meet the error 
tolerance requirements. When the solution is diverging, 

relaxf is reduced and its sign is reversed in order to trap the 
solution and re-attempt convergence, starting however from a 
different set of initial conditions this time.  

Practical application has shown that the ideal starting 
value of the relaxation factor depends on the nature of the 
iteration conducted. Recommended values may range from 0.1 
to 0.001. Experience has also shown that subsequent 
reductions of relaxf , of the order of 2, when numerical 
instabilities are encountered, can facilitate successful 
convergence to error tolerances as low as 1.0E-7 at reasonable 
convergence rates. Equation 18 and the fairly straightforward 
mathematical manipulation of relaxf , facilitates control over 
the actual convergence process and its rate, maximizing the 
chances for reaching the correct solution without being 
hindered by the limitations of the numerical scheme employed. 
The following section discusses in more detail the practical 
application of the hybrid DCC algorithm.    
 
 
2.2   Testing and Validation of the DCC Algorithm 

 
The hybrid DCC algorithm is a versatile tool that can have 

many applications. Nevertheless, it was mainly developed in 
the context of this work to meet the requirements imposed by 
SLC-type of through-flow analyses in turbomachinery 
components. It was therefore fully integrated into SOCRATES 
(Synthesis Of Correlations for the Rapid Analysis of Turbomachine Engine 
Systems), a turbomachinery design and performance simulation 
tool developed by researchers at Cranfield University [25, 31-
34] (Fig. 6). The hybrid DCC algorithm was called by the code 
during run-time to handle the execution of several different 
iterative loops. For example it handled the solution of the REE 
at hundreds of computation nodes, the stream-tube and overall 
mass flow convergence processes, the change in streamline 
radii, the calculation of static temperature, Cp and   from 
Mach number etc.  

 
 

      
 
Fig. 6 Example of SOCRATES’ turbomachinery design 

environment – single stage fan with cone  
 
Figure 7 illustrates the complete error history of several 

iterative processes, as evolved during a typical code execution 
for the performance analysis of a 2-stage compressor (its 
performance is discussed in more detail in Section 3). By 
zooming in closer to the x-axis in the above figure, Figures 8 
to 12 provide typical samples of the operation of the DCC 
algorithm. For example in the first case (Fig. 8), after the rapid 
convergence to a moderate error tolerance using Newton’s 
method, the controller detects the diverging solution and 
intervenes accordingly, so that a steady converged solution is 
achieved at a smaller tolerance value after a few iterations. 
Similarly, Figures 9 and 10 illustrate converged cases where 
the solution was finally driven by the dynamic controller to 
lower absolute values of error tolerance.    

 
Dynamic Convergence Control - Error Tolerance History
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Fig. 7 Typical overall convergence history during code 

execution for the performance analysis of a 2-stage 
compressor  

 
Figure 11 illustrates an example of successful convergence 

without DCC intervention, and Figure 12 again demonstrates 
the ability of the algorithm to help achieve really small error 
tolerances even after a diverging solution.  
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Dynamic Convergence Control - Error Tolerance History
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Fig. 8 Typical convergence history with DCC algorithm 

intervention after a divergent solution 
 
Testing rigorously the performance of the hybrid DCC 

algorithm over a wide range of compressor operating 
conditions, even far off-design, led to the conclusion that 
dynamic convergence control can be a very versatile and 
valuable asset in the toolkit of an SLC software, improving 
significantly its capabilities and overall robustness. Actual 
numerical results, compared against experimental data are 
presented in the next section in support of this conclusion. 
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Fig. 9 Typical convergence history with DCC algorithm 

intervention to achieve an even smaller error 
tolerance (absolute value) 

 

Dynamic Convergence Control - Error Tolerance History
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Fig. 10 Typical convergence history with DCC algorithm 

intervention to achieve an even smaller error 
tolerance (absolute value) 
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Fig. 11 Typical convergence history using Newton’s method 

with no DCC algorithm intervention 
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Fig. 12 Typical convergence history with DCC algorithm 

intervention after a divergent solution 
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3   APPLICATION IN SOCRATES 
 
The SOCRATES turbomachinery design and performance 

analysis tool is equipped with several different numerical 
schemes largely from the public domain. These numerical 
schemes, having a different range of applicability and different 
limitations, have to be ‘mixed and matched’ by the user, 
according to the needs of the case being studied. This can turn 
into a fairly laborious, ‘trial and error’ exercise, requiring 
unnecessarily in the process the user to become familiar with 
the inner-workings of the various schemes available.  

The integration of the DCC algorithm into SOCRATES 
resulted in an enhanced version of the code which was 
subsequently tested at far off-design conditions, traditionally 
exhibiting convergence challenges. The analysis of compressor 
performance at rotational speeds away from the design point, 
where the flow field can be approximated reasonably well, 
typically presents convergence difficulties, since any initial 
guessed variables may have to be ‘initialized’ away from their 
true values. 

 The objectives of this exercise were mainly to i) to assess 
the stability and robustness of the new iteration scheme, 
particularly at extreme conditions, and ii) to validate the 
results against experimental data. The comparison against 
experimental results was carried out based on [35]. This 
technical report provides a very detailed description of 
measured flow field data for a NASA experimental two-stage 
compressor, from hub to tip and for a number of different 
compressor operating conditions (Table 1). 

 
Pressure  Ratio 2.399 
Temperature Ratio 1.334 
Isentropic Efficiency 0.849 
Corrected Mass Flow               [kg/s] 33.248 
rpm 16042.800 
Inlet Hub to Tip Ratio 0.375 
1st Rotor Tip Speed                  [m/s] 428.896 
2nd Rotor Tip Speed                 [m/s] 405.341 

 
Table 1 NASA two-stage compressor design overall 
parameters 
 

 
 
Fig. 13 3D model of the NASA two-stage compressor in 

SOCRATES 
 
A two-stage compressor model (Fig. 13) was constructed 

in SOCRATES according to the detailed geometric data 
published in [35]. It is worth pointing out that SOCRATES is 
based on an inviscid flow analysis that is coupled with various 
loss, deviation and boundary layer models. Previous 
publications by the same authors [25, 31-34] reported 
thoroughly on the synthesis of the various viscous and loss 
models that have been included in this particular software over 
the years. For the analysis reported here, loss and deviation 
data were used from [35].  

Using the new version of the software tool, 2D profiles of 
various flow properties for all four blade rows were calculated 
and compared against the measured performance data provided 
in the aforementioned report. Figures 14 and 15 present the 
comparison between the measured (NASA) and simulated 
(SLC) meridional velocity variation, at the inlet and outlet of 
all four blade rows and at 50% design rotational speed. The 
span-wise meridional velocity variation is obviously the direct 
outcome of the iterative solution of the REE. Similarly, Figures 
16 and 17 present comparisons of the absolute velocity span-
wise distribution at the same power setting.      
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Fig. 14 Inlet meridional velocity variation from hub to tip at 

50% DP rotational speed 
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Span-wise Outlet Meridional Velocity Variation
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Fig. 15 Outlet meridional velocity variation from hub to tip at 

50% DP rotational speed 
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Fig. 16 Inlet absolute velocity variation from hub to tip at 

50% DP rotational speed 
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Fig. 17 Outlet absolute velocity variation from hub to tip at 

50% DP rotational speed 
 
In all cases examined, the incorporation of the DCC 

algorithm enabled a fast and faultless convergence, without 
requiring any manual intervention. More importantly, even at 
part-speed operation, the comparison of the calculated 

compressor performance against experimental data revealed 
that reasonable results can be obtained, meaning that the 
algorithm is not just converging randomly on unrealistic 
solutions. Actually, the calculated flow properties were found 
to be in a very good overall qualitative and quantitative 
agreement with the experimental measurements, as illustrated 
above.  

 

4   MAIN CONCLUSIONS 
 
This manuscript discusses the development, validation and 

deployment of an ‘intelligent’ DCC algorithm for the fast, 
accurate and robust numerical solution of the non-linear 
equations of motion for two-dimensional flow fields. The 
algorithm was specifically developed to address the 
computational challenges presented by SLC-type of analyses, 
and in particular the fast and accurate solution of the full REE.  

This hybrid DCC algorithm is largely based on Newton’s 
method but addresses effectively the inherent limitations of the 
method. It also combines the speed of execution of the method 
with a slower, but more robust numerical scheme introduced by 
the authors. This is only employed while the solution is very 
close to the true root and when numerical instabilities are 
encountered. Furthermore, the algorithm includes a 
monitoring facility that can track the evolution of errors 
generated during successive iterations and take appropriate 
intervening action during run-time, thus eliminating the large 
user intervention, usually required by standard numerical 
methods.  

The DCC algorithm was subsequently integrated into a 
turbomachinery design and performance analysis tool and was 
tested rigorously, particularly at compressor operating regimes 
traditionally exhibiting convergence difficulties (i.e. part-speed 
performance). For all case-studies examined, the DCC 
algorithm enabled a fast and crash-free convergence, ‘guiding’ 
successfully the solution down to the specified error tolerance, 
at the expense of a slightly slower iteration process (compared 
to a conventional Newton-Raphson scheme). Even at part-
speed operation, the comparison of the calculated compressor 
performance against experimental data revealed a very good 
qualitative and quantitative agreement. 

Overall, the hybrid DCC algorithm, developed in the 
context of this work, was found to provide considerably 
enhanced convergence stability and robustness features. It was 
proven to be a versatile and valuable asset in the toolkit of 
through-flow analysis software but it can also find other 
applications in engineering as well, particularly wherever 
complex numerical analyses need to be carried out. 
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APPENDIX 1 - NOMENCLATURE 

 
Abbreviations 
 
DP  Design Point 
REE Radial Equilibrium Equation 
SLC Streamline Curvature 
2D  Two-Dimensional 
 
Symbols 
 
A, B, C Differential equation terms 
F  Force 
H  Enthalpy 
I  Rothalpy 
P  Pressure 
S  Entropy 
T  Temperature 
V  Absolute air velocity 
W  Relative velocity 
c  Constant of integration 
f  Function, factor 
i,j,k  Unit vectors 
m  Meridional direction 
r  Radius, radial direction, root 
rc  Radius of curvature 
s  Tangential along the blade edge direction 
z  Axial direction 
 
Greek Symbols 
 
α  Absolute flow angle 
β  Relative flow angle 
γ  Sweep angle 
ε  streamline slope angle 
λ  Lean angle 
ρ  Density 

ω  Angular speed 
 
Subscripts 
 
D  Drag 
P  Pressure 
j  Streamline counter 
m  Meridional direction 
n  Normal direction 
r  Radial direction 
relax Relaxation 
root  The solution of a function 
w  Whirl direction 
z  Axial direction 

 


