

1

A dynamic convergence control scheme for the solution of the radial
equilibrium equation in through-flow analyses
V Pachidis1*, I Templalexis2, P Pilidis1, and P Kotsiopoulos2
1Cranfield University, School of Engineering, Department of Power and Propulsion, Gas Turbine Engineering
Group, Cranfield, Bedfordshire, MK43 0AL, England
2Hellenic Air Force Academy, Section of Thermodynamics, Power and Propulsion Systems, Hellenic Air Force,
Dekeleia Air Base, Greece

Abstract: One of the most frequently encountered numerical problems in scientific analyses is the solution of non-
linear equations. Often the analysis of complex phenomena falls beyond the range of applicability of the numerical
methods available in the public domain, and demands the design of dedicated algorithms that will approximate, to
a specified precision, the mathematical solution of specific problems. These algorithms can be developed from
scratch or through the amalgamation of existing techniques. The accurate solution of the full Radial Equilibrium
Equation (REE) in Streamline Curvature (SLC) through-flow analyses presents such a case. This manuscript
discusses the development, validation and application of an ‘intelligent’ Dynamic Convergence Control (DCC)
algorithm for the fast, accurate and robust numerical solution of the non-linear equations of motion for two-
dimensional flow fields. The algorithm was developed to eliminate the large user intervention, usually required by
standard numerical methods. The DCC algorithm was integrated into a turbomachinery design and performance
simulation software tool and was tested rigorously, particularly at compressor operating regimes traditionally
exhibiting convergence difficulties (i.e. far off-design conditions). Typical error histories and comparisons of
simulated results against experimental are presented in this manuscript for a particular case-study. For all case-
studies examined, it was found that the algorithm could successfully ‘guide’ the solution down to the specified
error tolerance, at the expense of a slightly slower iteration process (compared to a conventional Newton-Raphson
scheme). This hybrid DCC algorithm can also find use in many other engineering and scientific applications that
require the robust solution of mathematical problems by numerical, instead of analytical means.

Keywords: Numerical Analysis, Dynamic Convergence Control, Streamline Curvature, Radial Equilibrium
Equation

1 INTRODUCTION

Numerical methods are usually based on calculating an

approximation to the true value of a root of the equation
  0xf and then successively refining this approximation

until further refining would achieve no useful purpose [1].
Also included in this type of problem is the determination of
the points of intersection of two curves.
--
* Corresponding author: Dep. Director of the Cranfield Rolls-Royce UTC in
Performance Engineering, Department of Power and Propulsion, Gas Turbine
Engineering Group, Cranfield, Bedfordshire MK43 0AL, UK. email:
v.pachidis@cranfield.ac.uk

If the curves are represented by functions  xf and  xg
respectively, the intersection points correspond to the roots of
the function      xgxfxF  . The vast majority of the
root-solving techniques available today is of this iterative
nature. An initial guess for the root is specified, or an interval
that is known to contain a root, and the various numerical
schemes will return an improved guess or a more limited
interval. The same procedure is then repeated using the new
values until a root of desired accuracy is obtained or until the
method encounters difficulties and fails. Although some of the
schemes are guaranteed to find a root eventually, they may take
considerable computer time to arrive at the answer. On the

e101466
Text Box
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, July 1, 2010, Volume 224, Number 7, Pages 803-815

2

other hand, faster schemes may be able to converge to a root
quicker, but tend to be susceptible to problems of divergence
[2].

The physical characteristics of the computational platform
used, as well as the nature itself of the problem being solved,
can impose major limitations on the numerical scheme
applied, and ultimately determine its success or failure. The
effects of these constraints need to be both predictable and
controllable. An excellent introduction to the theory of
numerical analysis is given in references [3, 4]. References [5-
7] cover the detailed aspects of more involved computational
techniques, their range of applicability and their limitations.
The practical application of numerical analyses by means of
computer algorithms is covered well in [8-10]. To facilitate the
solution of specific mathematical problems, e.g. the solution of
the full REE in through-flow analyses, computer algorithms
such as those described in [11-15] for numerical integration, or
the solution of partial differential equations, can provide useful
inspiration for the development of more advanced, hybrid
computational techniques.

1.1 Solution of the REE in Through-Flow Analyses

The SLC through-flow method basically considers the

flow within the compressor as axi-symmetric, compressible
and inviscid. It solves the discrete equations of continuity,
motion, energy and state in a form that incorporates the full
three-dimensional compressor geometry and on a
computational grid which is constructed in the meridional
plane. After the transformation of the discrete equations and
the solution of a system of equations, the result is a non-linear
partial differential equation known as the REE [16]. This
equation represents the gradient of the meridional velocity in
the span-wise direction and needs to be solved by a finite
difference approximation via an iterative approach.

Equation 1 represents the most general form of the REE
[17] for the case of axi-symmetric inviscid flow, and can be
used to describe the flow both into and out of stator and rotor
blade rows with minor alterations (i.e. for stators relative
velocity terms are replaced by the absolute velocity terms, the
relative angle β is replaced by the absolute angle α and the
rotational speed is set to zero).

   

 
 
 

 

 

 

 

 















































































































































cossintan
cossin

cos2

tansin2

1tan

cos

sin1

sinsin
cos
sin

tansin

2

2

dm
dST

ds
dST

ds
dI

W
ds
rWd

r
W

rdm
rWd

V

r

dm
d

r

ds
d

dm
d

V
ds

dVV

w
ww

w

m

c

m
m

m

 (1)

Equation 1 is a second order differential equation that can be
broken down into the following terms:

   

 
 

 

   







































crdm
d

rds
d

dm
d

A










cossin1

sinsin
cos
sin

tansin
 (2)

 







   tansin21tan

rdm
rWdB w (3)

 

 

















































cossintan
cossin

cos2

2

dm
dST

ds
dST

ds
dI

W
ds
rWd

r
W

C

w
ww

 (4)

Substituting, Equation 1 can be reduced to:

CBVAV
ds

dVV mm
m

m  2 (5)

3

In this case the solution of the equation has as follows:

 

cs
BAC
BAV

BACA
B

A
CBVAV

m

mm






















2
1

2

2

4
2tan

4

2
ln

 (6)

The constant of integration c can be calculated by applying
equation 6 for two consecutive stream-lines as below:

jj
jm

jm

jmjm

jmjm

ss
BAC

BAV

BAC

BAV

BACA
B

CBVAV
CBVAV

A

















































































12

.1

2

1.1

2

,
2
,

1,
2

1,

4

2
tan

4

2
tan

4

ln
2
1

 (7)

The terms A, B and C contain, apart from certain flow

parameters, derivatives along the s and m directions. In order
to specify an initial value for the derivative terms, a flow
pattern including all the related parameters has to be assumed
throughout the compressor. Moreover, the derivatives along the
s direction at certain streamline locations can only be updated
once the meridional velocity profile is obtained at the
corresponding plane (this can be the leading or the trailing
edge of a blade). On the other hand, in order for the
meridional derivatives to be updated, the meridional velocity
profile of the entire compressor needs to be determined first.

In order to start the iteration, computation nodes can be
defined for example at the intersections of the streamlines and
the blade edges. Obviously, at the beginning, node coordinates
are unknown since the streamline positions have not been
determined yet. A certain radial position for the streamlines is
assumed throughout the compressor’s effective flow area, as
well as a certain meridional velocity distribution. Then, a
meridional velocity profile is defined along every compressor
blade leading and trailing edge, such as to satisfy both the REE
and the mass flow continuity. In order to achieve this double
convergence, a meridional velocity profile is determined first,
based on an arbitrary value of meridional velocity at a certain
compressor height and then it is successively recalculated until
all the streamtube mass flows are satisfied. The REE basically
reflects the equation of the pressure forces to the inertial
forces. Stream-tubes that contain a fixed amount of mass, as
they are confined between two streamlines, are successively
refined regarding their radial position in order for the REE to
be satisfied.

The overall solution process is obviously not a straight
forward one and is largely based on a trial and error approach,
involving usually a large number of iterative loops, both nested
and crossing over. The whole iterative scheme is by default

very complicated and potentially troublesome, especially as far
as specifying initial conditions and maintaining a stable and
robust convergence is concerned.

During the forty years approximately of the existence of
the SLC method, numerous authors have proposed several
variations of the SLC calculation scheme [18-24]. All these
different schemes were mainly influenced by the type of the
turbomachine the method was applied to (radial or axial), the
nature of the flow being considered (subsonic or supersonic)
and the level up to which the flow viscosity and
circumferential in-homogeneities were taken into account. In
many cases, the various calculation schemes were also
influenced by the particular characteristics of the cascade, such
as hub to tip ratio, or lean and sweep angle distributions [25].
Nevertheless, in all these publications very little is usually
mentioned as to the actual numerical scheme or algorithm
being used to facilitate convergence. Perhaps, some more
useful information can be obtained from [26-29], but again not
sufficient in its own merit for a wider application in a more
generic context.

The authors of this manuscript have included the next two
sections (Section 1.2 and Section 1.3) in order to capture in a
synopsis the reasons behind this work and make this document
easier to follow.

1.2 Newton’s Method - Background and Overview

Newton’s (or the Newton-Raphson) method can usually be

relied upon to find a solution quickly and accurately [30]. It is
used routinely in the solution of complex engineering and
scientific problems, as well as in through-flow calculations. In
its pure form, it derives from the Taylor series for the
function  xf .

        ...
!2

1 2
02

2

00

00




xx
dx

fdxx
dx
dfxfxf

xxxx

 (8)

If 0xx  is small enough, only a few terms in the above
series need to be retained. To find a root of the function, an x
needs to be identified such that   0xf or :

        ...
!2

10 2
02

2

00

00

 xx
dx

fdxx
dx
dfxfxf

xx

 (9)

If it is assumed that the desired root x is near the value 0x ,
then:

     00
0

0 xx
dx
dfxfxf

x

 (10)

If x is not near 0x this may not even be approximately true.
In the last equation everything except x (the root) is known
and so we can solve for x considering that dxdff / . The
last equation then becomes:

4

 
 0

0
0 xf

xfxx


 (11)

If 0xx  is indeed small, then the last equation will be a good

estimate of the actual root of the function. But if 0xx  is not
small, then the solution will lie far from the actual root of the
function. Replacing the function  xf by the first two terms in
its Taylor series approximates the function by a straight line
through the point (0x ,  0xf), which has the same slope as
the tangent to the curve at that point (Fig. 1). Then setting this
approximation to  xf = 0, gives the point where the line
intersects the axis. Although the value generated is closer to
the actual root than was the starting point 0x , this procedure

will not in general give the actual root of  xf in one
iteration. Newton’s method simply consists of repeating this
process. That is, starting from an initial guess for the root of
 xf , say 0x , calculate an improved guess 1x , and then use

the improved value 1x for the root in the next cycle to
calculate a new improvement on the root.

Fig. 1 The Newton-Raphson iteration scheme

1.3 Newton’s Method - Limitations

Newton’s method attempts to find a root of a function

 xf by repeatedly approximating the function by straight
lines. Compared to other numerical schemes, this method
incorporates a lot of information about the behaviour of the
function into the root-solving algorithm. Specifically, the
method monitors at each step not only the value of the function
but also its slope (the derivative of the function). It is this
particular feature that results in a dramatic improvement in the

rate of convergence. However, Newton’s method differs from
other procedures in that it does not guarantee that a root will
be found in all cases, and hence, it will often tend to diverge or
completely fail, especially when applied to complex functions
having an unpredictable behaviour. There are a few potential
problems that can cause the method to fail. These are
explained and also graphically illustrated in the following
figures (Figs. 2-5). First of all, if the slope of the function is
nearly horizontal and the initial guess of 0x is so poor that

 0xf  is very small, the first iteration may be thrown out of
the region of interest and the solution would then diverge (Fig.
2). Also, the method will likely fail if the initial guess is in a
region where the function has a local minimum but no root
(Fig. 3).

Fig. 2 A horizontal slope may cause a failure

Moreover, the method will not be able to find a root
whenever the derivative at the root is infinite (Fig. 4). The
method would also have difficulties with multiple roots, as
Figure 5 illustrates. At the position of a multiple root, both
 xf and  0xf  become nearly zero and therefore the

algorithm would exhibit a very slow convergence and
ultimately fail when attempting to divide zero by zero.

5

Fig. 3 A local minimum may cause a failure

Fig. 4 A vertical slope near a root may cause a failure

Fig. 5 A multiple root may cause a failure

2 THE HYBRID DCC ALGORITHM

In all numerical schemes potential computational

difficulties of any nature can be avoided by gathering as much
information as possible in the initial choice of the method used
and the accompanying initial guess. Also a rough
understanding of the behavior of the function itself should be
obtained (analytically or graphically) before root solving is
attempted. In practice however, the exact nature of the function
is usually unknown. In these cases, Newton’s method in its
original form as described previously, can not work and a
different method, or combination of methods, requiring less
initial information about the nature of the function being
solved, needs to be implemented. Moreover, a method of
monitoring the function needs to be utilized to arrive at some
understanding of how the function is behaving during
computation.

This is the general approach taken by the work reported
here. The hybrid DCC algorithm is largely based on Newton’s
method but addresses effectively the inherent limitations of the
method described in Section 1.3. It also combines the speed of
execution of the method with a slower, but more robust
numerical scheme which is only employed while the solution is
close to the true root and when numerical instabilities are
encountered. Furthermore, the algorithm includes a
monitoring facility that can track the evolution of errors
generated during successive iterations and take appropriate
intervening action during run-time. More specifically the
algorithm:
 Dynamically monitors the convergence history of the

various iterative processes during code execution
 Automatically detects the nature of the convergence mode

that the solution has fallen into (i.e. stable convergence,
divergence, various types of numerical oscillations etc.)

 Dynamically changes the numerical scheme employed and
also the rate of convergence according to the detected
mode

 Traps diverging iterations and attempts to return the
solution to steady convergence, hence preventing it from
diverging any further

 Prevents the software from crashing due to numerical
instabilities

 Dynamically ‘drives’ the solution down to the specified
error tolerance by intervening appropriately throughout

 Informs the user when a particular solution has steadily
converged above the specified error tolerance and prompts
for action

 When a particular iteration converges below the specified
error tolerance, it automatically resets all initial settings
back to their default values for the monitoring of the next
iterative process

More details are given in the following section.

6

2.1 Algorithm Inner-Workings

As discussed previously, Newton’s method requires the

values of the function itself, as well as the values of the first
derivative of the function. Calculating the derivative of
Equation 1 or Equation 7 can be extremely computationally
expensive (if not impossible). Finding the solution of this
function is also only an incidental part of a much larger
problem and not the sole objective of a through-flow
computation.

We could therefore adopt an easier strategy and replace
the derivative with an estimate, obtained numerically from the
slope of the line joining the last two iterates. The point where
this line, called the ‘secant’ (hence the name of this method),
cuts the x-axis is taken to be the next iterate. This approach
requires two values of x to start the iteration. These two
values of x can be closely spaced together and need not to be
bracketing the root. In other words, specifying these two initial
guesses should not be difficult at all. An approximate
expression of the derivative can be obtained, for example, from
the first backward difference as follows:

     
x

xxfxf
xf




 00
0 (12)

Using Equation 12, Equation 11 can then be modified
accordingly.

Since the ‘secant’ method is based on Newton’s method it
will exhibit similar vulnerabilities and tendency to fail in those
cases discussed in Section 1.3. First of all, the slow
convergence rate at multiple roots can be addressed as follows.
Newton’s method will fail at a multiple root because of the
operation of dividing zero by zero, a forbidden operation on
any computer. In mathematics however, the operation 0/0 is
not forbidden; it is simply an undetermined form (neither 0 nor
infinity). It has no numerical value until it is defined to be a
specific value in a particular problem [30]. In addition to
suffering from a slow convergence rate for multiple roots,
Newton’s method may yield a result that is invalidated by
round-off errors caused when both the value of the function
and its derivative are extremely small.

Amending the previous procedure, if we consider for
example the following simple function  xf that has a
multiple root of multiplicity m at rx  , we can write:

     xgrxxf m (13)

Since the value of r is yet unknown,  xg is likewise

unknown. We can, however, assume that  xg is not zero (or

extremely small) at rx  . Then applying Newton’s method
with an initial guess of 0x near r , we have:

     000 xgrxxf m (14)

         000

1
00 xgrxxgrxmxf mm   =

     
  





 





0

0

0
00 xg

xg
rx

mxgrx m =

   
  





 





0

0

0
0 xg

xg
rx

mxf (15)

The assumptions made regarding 0x and  xg ensure that the
first term in the brackets in the last equation is much larger
than the second. Thus we can approximate this equation as:

   
rx

mxfxf



0

00
 (16)

Solving this for the root r , we obtain:

 
 0

0
0 xf

xfmxr


 (17)

This is almost the same as the original Newton algorithm, with
the replacement  ffxx  / becoming  ffmxx  /
for a function with a root of multiplicity m . With this simple
amendment to Newton’s method the desired convergence rate
is restored.

As mentioned previously, the other inherent limitations of
Newton’s method have been addressed through the
implementation of an error monitoring facility and a more
robust numerical scheme. This additional numerical scheme,
being somewhat slower, is employed only towards the last
stages of convergence, when a solution is found to orbit
dangerously around a root, and when numerical instabilities
are encountered. More specifically, at the beginning of an
iteration, generated errors are stored in a memory register.
After a specified number of loops this error history is
examined by the algorithm and unless the convergence process
is stable, the Newton-Raphson/Secant numerical scheme
switches to:

 

  













 


0

0
01 1

xf
fxf

fxx root
relax (18)

Where relaxf is a relaxation factor and rootf is the target
solution. For example, when applying this scheme for the
solution of the REE, rootf becomes a particular s (or s
coordinate) in the tangential direction along the blade span,

7

and 1x becomes a meridional velocity value that can satisfy the
REE at that particular coordinate.

When the iteration does not reach convergence after a
specified number of loops, relaxf needs to be reduced.
Similarly, if successive iterates are found to oscillate around a
solution, relaxf is reduced again to help meet the error
tolerance requirements. When the solution is diverging,

relaxf is reduced and its sign is reversed in order to trap the
solution and re-attempt convergence, starting however from a
different set of initial conditions this time.

Practical application has shown that the ideal starting
value of the relaxation factor depends on the nature of the
iteration conducted. Recommended values may range from 0.1
to 0.001. Experience has also shown that subsequent
reductions of relaxf , of the order of 2, when numerical
instabilities are encountered, can facilitate successful
convergence to error tolerances as low as 1.0E-7 at reasonable
convergence rates. Equation 18 and the fairly straightforward
mathematical manipulation of relaxf , facilitates control over
the actual convergence process and its rate, maximizing the
chances for reaching the correct solution without being
hindered by the limitations of the numerical scheme employed.
The following section discusses in more detail the practical
application of the hybrid DCC algorithm.

2.2 Testing and Validation of the DCC Algorithm

The hybrid DCC algorithm is a versatile tool that can have

many applications. Nevertheless, it was mainly developed in
the context of this work to meet the requirements imposed by
SLC-type of through-flow analyses in turbomachinery
components. It was therefore fully integrated into SOCRATES
(Synthesis Of Correlations for the Rapid Analysis of Turbomachine Engine
Systems), a turbomachinery design and performance simulation
tool developed by researchers at Cranfield University [25, 31-
34] (Fig. 6). The hybrid DCC algorithm was called by the code
during run-time to handle the execution of several different
iterative loops. For example it handled the solution of the REE
at hundreds of computation nodes, the stream-tube and overall
mass flow convergence processes, the change in streamline
radii, the calculation of static temperature, Cp and  from
Mach number etc.

Fig. 6 Example of SOCRATES’ turbomachinery design

environment – single stage fan with cone

Figure 7 illustrates the complete error history of several

iterative processes, as evolved during a typical code execution
for the performance analysis of a 2-stage compressor (its
performance is discussed in more detail in Section 3). By
zooming in closer to the x-axis in the above figure, Figures 8
to 12 provide typical samples of the operation of the DCC
algorithm. For example in the first case (Fig. 8), after the rapid
convergence to a moderate error tolerance using Newton’s
method, the controller detects the diverging solution and
intervenes accordingly, so that a steady converged solution is
achieved at a smaller tolerance value after a few iterations.
Similarly, Figures 9 and 10 illustrate converged cases where
the solution was finally driven by the dynamic controller to
lower absolute values of error tolerance.

Dynamic Convergence Control - Error Tolerance History

-1.0E-02

-8.0E-03

-6.0E-03

-4.0E-03

-2.0E-03

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

0 5000 10000 15000 20000 25000 30000

No of Iterations

Er
ro

r T
ol

er
an

ce

Fig. 7 Typical overall convergence history during code

execution for the performance analysis of a 2-stage
compressor

Figure 11 illustrates an example of successful convergence

without DCC intervention, and Figure 12 again demonstrates
the ability of the algorithm to help achieve really small error
tolerances even after a diverging solution.

8

Dynamic Convergence Control - Error Tolerance History

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

5.0E-03

1 21 41 61 81 101 121 141

No of Iterations

Er
ro

r T
ol

er
an

ce

Initial error tolerance

Fast convergence to a
tolerance of 1.37E-05

Solution diverging

Dynamic convergence
controler intervention

Steady convergence to
a tolerance of 4.08E-08

Fig. 8 Typical convergence history with DCC algorithm

intervention after a divergent solution

Testing rigorously the performance of the hybrid DCC

algorithm over a wide range of compressor operating
conditions, even far off-design, led to the conclusion that
dynamic convergence control can be a very versatile and
valuable asset in the toolkit of an SLC software, improving
significantly its capabilities and overall robustness. Actual
numerical results, compared against experimental data are
presented in the next section in support of this conclusion.

Dynamic Convergence Control - Error Tolerance History

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

1.6E-05

1.8E-05

2.0E-05

650 660 670 680 690 700 710 720 730

No of Iterations

Er
ro

r T
ol

er
an

ce

Dynamic convergence
controler intervention

Steady convergence to
a tolerance of 6.09E-07

Fig. 9 Typical convergence history with DCC algorithm

intervention to achieve an even smaller error
tolerance (absolute value)

Dynamic Convergence Control - Error Tolerance History

-5.0E-05

-4.5E-05

-4.0E-05

-3.5E-05

-3.0E-05

-2.5E-05

-2.0E-05

-1.5E-05

-1.0E-05

-5.0E-06

0.0E+00
1800 1820 1840 1860 1880 1900 1920 1940 1960

No of Iterations

Er
ro

r T
ol

er
an

ce

Dynamic convergence
controler intervention

Steady convergence to a
tolerance of -9.93E-07

Fig. 10 Typical convergence history with DCC algorithm

intervention to achieve an even smaller error
tolerance (absolute value)

Dynamic Convergence Control - Error Tolerance History

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

1.0E-02

5200 5220 5240 5260 5280 5300 5320 5340

No of Iterations

Er
ro

r T
ol

er
an

ce

Steady convergence to a
tolerance of 6.98E-07
without intervention

Fig. 11 Typical convergence history using Newton’s method

with no DCC algorithm intervention

Dynamic Convergence Control - Error Tolerance History

-7.0E-05

-6.0E-05

-5.0E-05

-4.0E-05

-3.0E-05

-2.0E-05

-1.0E-05

0.0E+00
7200 7220 7240 7260 7280 7300 7320 7340 7360 7380 7400

No of Iterations

Er
ro

r T
ol

er
an

ce

Solution diverging
Dynamic convergence
controler intervention

Steady convergence to a
tolerance of -8.55E-07

Fig. 12 Typical convergence history with DCC algorithm

intervention after a divergent solution

9

3 APPLICATION IN SOCRATES

The SOCRATES turbomachinery design and performance

analysis tool is equipped with several different numerical
schemes largely from the public domain. These numerical
schemes, having a different range of applicability and different
limitations, have to be ‘mixed and matched’ by the user,
according to the needs of the case being studied. This can turn
into a fairly laborious, ‘trial and error’ exercise, requiring
unnecessarily in the process the user to become familiar with
the inner-workings of the various schemes available.

The integration of the DCC algorithm into SOCRATES
resulted in an enhanced version of the code which was
subsequently tested at far off-design conditions, traditionally
exhibiting convergence challenges. The analysis of compressor
performance at rotational speeds away from the design point,
where the flow field can be approximated reasonably well,
typically presents convergence difficulties, since any initial
guessed variables may have to be ‘initialized’ away from their
true values.

 The objectives of this exercise were mainly to i) to assess
the stability and robustness of the new iteration scheme,
particularly at extreme conditions, and ii) to validate the
results against experimental data. The comparison against
experimental results was carried out based on [35]. This
technical report provides a very detailed description of
measured flow field data for a NASA experimental two-stage
compressor, from hub to tip and for a number of different
compressor operating conditions (Table 1).

Pressure Ratio 2.399
Temperature Ratio 1.334
Isentropic Efficiency 0.849
Corrected Mass Flow [kg/s] 33.248
rpm 16042.800
Inlet Hub to Tip Ratio 0.375
1st Rotor Tip Speed [m/s] 428.896
2nd Rotor Tip Speed [m/s] 405.341

Table 1 NASA two-stage compressor design overall
parameters

Fig. 13 3D model of the NASA two-stage compressor in

SOCRATES

A two-stage compressor model (Fig. 13) was constructed

in SOCRATES according to the detailed geometric data
published in [35]. It is worth pointing out that SOCRATES is
based on an inviscid flow analysis that is coupled with various
loss, deviation and boundary layer models. Previous
publications by the same authors [25, 31-34] reported
thoroughly on the synthesis of the various viscous and loss
models that have been included in this particular software over
the years. For the analysis reported here, loss and deviation
data were used from [35].

Using the new version of the software tool, 2D profiles of
various flow properties for all four blade rows were calculated
and compared against the measured performance data provided
in the aforementioned report. Figures 14 and 15 present the
comparison between the measured (NASA) and simulated
(SLC) meridional velocity variation, at the inlet and outlet of
all four blade rows and at 50% design rotational speed. The
span-wise meridional velocity variation is obviously the direct
outcome of the iterative solution of the REE. Similarly, Figures
16 and 17 present comparisons of the absolute velocity span-
wise distribution at the same power setting.

Span-wise Inlet Meridional Velocity Variation

50% DP Rotational Speed

0.05

0.1

0.15

0.2

0.25

0.3

50 70 90 110 130 150 170 190

INLET MERIDIONAL VELOCITY [m/sec]

R
A

D
II

[m
]

R1 SLC
S1 SLC
R2 SLC
S2 SLC
R1 NASA
S1 NASA
R2 NASA
S2 NASA

Fig. 14 Inlet meridional velocity variation from hub to tip at

50% DP rotational speed

10

Span-wise Outlet Meridional Velocity Variation

50% DP Rotational Speed

0.05

0.1

0.15

0.2

0.25

0.3

50 70 90 110 130 150 170 190

OUTLET MERIDIONAL VELOCITY [m/sec]

R
A

D
II

[m
]

R1 SLC
S1 SLC
R2 SLC
S2 SLC
R1 NASA
S1 NASA
R2 NASA
S2 NASA

Fig. 15 Outlet meridional velocity variation from hub to tip at

50% DP rotational speed

Span-wise Inlet Absolute Velocity Variation
50% DP Rotational Speed

0.05

0.1

0.15

0.2

0.25

0.3

50 70 90 110 130 150 170 190

INLET ABSOLUTE VELOCITY [m/sec]

R
A

D
II

[m
]

R1 SLC
S1 SLC
R2 SLC
S2 SLC
R1 NASA
S1 NASA
R2 NASA
S2 NASA

Fig. 16 Inlet absolute velocity variation from hub to tip at

50% DP rotational speed

Span-wise Outlet Absolute Velocity Variation
50% DP Rotational Speed

0.05

0.1

0.15

0.2

0.25

0.3

50 70 90 110 130 150 170 190
OUTLET ABSOLUTE VELOCITY [m/sec]

R
A

D
II

[m
]

R1 SLC
S1 SLC
R2 SLC
S2 SLC
R1 NASA
S1 NASA
R2 NASA
S2 NASA

c15

Fig. 17 Outlet absolute velocity variation from hub to tip at

50% DP rotational speed

In all cases examined, the incorporation of the DCC

algorithm enabled a fast and faultless convergence, without
requiring any manual intervention. More importantly, even at
part-speed operation, the comparison of the calculated

compressor performance against experimental data revealed
that reasonable results can be obtained, meaning that the
algorithm is not just converging randomly on unrealistic
solutions. Actually, the calculated flow properties were found
to be in a very good overall qualitative and quantitative
agreement with the experimental measurements, as illustrated
above.

4 MAIN CONCLUSIONS

This manuscript discusses the development, validation and

deployment of an ‘intelligent’ DCC algorithm for the fast,
accurate and robust numerical solution of the non-linear
equations of motion for two-dimensional flow fields. The
algorithm was specifically developed to address the
computational challenges presented by SLC-type of analyses,
and in particular the fast and accurate solution of the full REE.

This hybrid DCC algorithm is largely based on Newton’s
method but addresses effectively the inherent limitations of the
method. It also combines the speed of execution of the method
with a slower, but more robust numerical scheme introduced by
the authors. This is only employed while the solution is very
close to the true root and when numerical instabilities are
encountered. Furthermore, the algorithm includes a
monitoring facility that can track the evolution of errors
generated during successive iterations and take appropriate
intervening action during run-time, thus eliminating the large
user intervention, usually required by standard numerical
methods.

The DCC algorithm was subsequently integrated into a
turbomachinery design and performance analysis tool and was
tested rigorously, particularly at compressor operating regimes
traditionally exhibiting convergence difficulties (i.e. part-speed
performance). For all case-studies examined, the DCC
algorithm enabled a fast and crash-free convergence, ‘guiding’
successfully the solution down to the specified error tolerance,
at the expense of a slightly slower iteration process (compared
to a conventional Newton-Raphson scheme). Even at part-
speed operation, the comparison of the calculated compressor
performance against experimental data revealed a very good
qualitative and quantitative agreement.

Overall, the hybrid DCC algorithm, developed in the
context of this work, was found to provide considerably
enhanced convergence stability and robustness features. It was
proven to be a versatile and valuable asset in the toolkit of
through-flow analysis software but it can also find other
applications in engineering as well, particularly wherever
complex numerical analyses need to be carried out.

REFERENCES

11

1 Faddeev, D. K. and Faddeeva, V. N. Computational
Methods of Linear Algebra, San Francisco: Freeman,
1963.

2 Todd, J. Basic Numerical Mathematics, 2 vols, New-York:
Academic Press, 1978-1980.

3 Hildebrand, F. B. Introduction to Numerical Analysis, 2nd
Edition, New-York: McGraw-Hill, 1974.

4 Todd, J. Survey of Numerical Analysis, New-York:
McGraw-Hill, 1962.

5 Dahlquist, G. and Björck, A. Numerical Methods,
Englewood Cliffs, NJ: Prentice-Hall, 1974.

6 Isaacson, E. and Keller, H. B. Analysis of Numerical
Methods, New-York: Wiley, 1973.

7 Scheid, F. Theory and Problems of Numerical Analysis,
New York: McGraw-Hill, 1968.

8 Forsythe, G. E., Malcolm, M. A. and Moler, C. B.
Computer Methods for Mathematical Computations,
Englewood Cliffs, NJ: Prentice-Hall, 1977.

9 Hennie, F. Introduction to Computability, Reading, MA:
Addison-Wesley, 1977.

10 Horowitz, E. and Sahni, S. Fundamentals of Computer
Algorithms, Rockville, MD: Computer Science Press,
1985.

11 Smith, G. D. Numerical Solution of Partial Differential
Equations, London: Oxford University Press, 1974.

12 Collatz, L. The Numerical Treatment of Differential
Equations, 3rd Edition, New York: Springer, 1966.

13 Davis, P. and Rabinowitz, P. Methods of Numerical
Integration, 2nd Edition, New York: Academic Press, 1984.

14 Traverso, A. and Massardo, A. F. Optimal design of
compact recuperators for microturbine application,
13594311, Applied Thermal Engineering, 2005.

15 Massardo, A. F. and Scialo, M. Thermoeconomic
analysis of gas turbine based cycles, Journal of
Engineering for Gas Turbines and Power, 2000.

16 Smith, L. H. The Radial Equilibrium Equation of
Turbomachinery, Trans. A.S.M.E., Series A, Vol 88, 1966.

17 Templalexis, I., Pilidis, P., Pachidis, V. and Kotsiopoulos,
P. Development of A 2D Compressor Streamline Curvature
Code, Transactions of the ASME, Journal of
Turbomachinery, TURBO-06-1178, Vol. 129, Issue 4,
October 2007. ASME Education Committee Best Paper
Award for 2006.

18 Wu, C. H. A General Through-Flow Theory Of Three-
Dimensioanl Flow In Subsonic And Supersonic
Turbomachines Of Axial-, Radial-, And Mixed-Flow
Types, NASA TN2604, 1952.

19 Barbosa, J. R. A Streamline Curvature Computer
Program For Axial Compressor Performance Prediction,
Ph.D Thesis, Vol. 1, Cranfield Institute of Technology,
School of Mechanical Engineering, 1987.

20 Boyer, K. M. An Improved Streamline Curvature
Approach for Off Design Analysis of Transonic

Compression Systems, Ph.D Thesis, Virginia Polytechnic
Institute and State University, 2001.

21 Denton, J. D. Through-flow Calculations For Transonic
Axial Flow Turbines, Transactions of the ASME, Journal
of Engineering for Power, Vol. 100, p. 212-18, 1978.

22 Frost, D. H. A Streamline Curvature Through-Flow
Computer Program for Analysing the Flow Through
Axial-Flow Turbomachines, Aeronautical Research
Council, R&M 3687, 1972.

23 Jennions, I. K. and Stow, P. The Quazi-Three-
Dimensional Turbomachinery Blade Design System, Part
I: Throughflow Analysis, Part II: Computerized System,
Transactions of the ASME, Journal of Engineering for Gas
Turbines and Power Vol. 107, p. 308-16, 1985.

24 Novak, R. A. Streamline Curvature Computing
Procedures For Fluid-Flow Problems, Transactions of the
ASME, Journal of Engineering for Power, Vol. 89, p. 478-
490, 1967.

25 Templalexis, I., Pachidis, V., Pilidis, P., and
Kotsiopoulos, P. The Effect of Blade Lean on the Solution
of the Radial Equilibrium Equation, GT2008-50259,
ASME Turbo Expo, Power For Land, Sea and Air, Berlin,
Germany, June 2008.

26 Wilkinson, D. H. Stability, Convergence and Accuracy of
2-D Streamline Curvature Methods Using Quasi-
Orthogonals, Proc. of the Institution of Mechanical
Engineers, Vol. 184, 1969-70.

27 Katsanis, T. Use Of Arbitrary Quasi-Orthogonals for
Calculating Flow Distribution in the Meridional Plane of a
Turbomachine, NASA Technical Note D-2546, 1964.

28 Katsanis, T. Use Of Arbitrary Quasi-Orthogonals for
Calculating Flow Distribution on a Blade-To-Blade
Surface in a Turbomachine, NASA Technical Note D-
2809, 1965.

29 Wood, M. D. and Marlow, A. V. The use of numerical
methods for the investigation of the flow in water pump
impellers, Proc. Institution of Mechanical Engineers, Vol.
181, Part 1, 1966-1967.

30 Kreyszig, E. Advanced Engineering Mathematics, 6th
Edition, New-York: John Wiley & Sons, 1988.

31 Pachidis, V., Pilidis, P., Templalexis, I., Alexander, T. and
Kotsiopoulos, P. Prediction of Engine Performance Under
Compressor Inlet Flow Distortion Using Streamline
Curvature, Transactions of the ASME, Journal of
Engineering for Gas Turbines and Power, GTP-05-1192,
Vol. 129, p. 97, January 2007.

32 Pachidis, V., Pilidis, P., Texeira, J., and Templalexis, I. A
Comparison of Component Zooming Simulation Strategies
Using Streamline Curvature”, Proceedings of the IMechE,
Journal of Aerospace Engineering, JAERO147, Vol. 221,
Part G, p. 1, 2007.

33 Pachidis, V., Pilidis, P., Marinai, L., and Templalexis, I.
Towards a Full Two Dimensional Gas Turbine Performance

12

Simulation, Proceedings of the RASoc, The Aeronautical
Journal, AJ-3127, June 2007.

34 Pachidis, V., Pilidis, P., Templalexis, I., and Marinai, L.
An Iterative Method for Blade Profile Loss Model
Adaptation Using Streamline Curvature, Transactions of the
ASME, Journal of Engineering for Gas Turbines and
Power, GTP-07-1072, Vol.130, Iss.1, December 2007.
ASME Cycle Innovations Committee Best Paper Award for
2007.

35 Urasek, D. C., Gorell, W. T. and Cunnan, W. S.
Performance Of Two-Stage Fan Having Low-Aspect-Ratio,
First Stage Rotor Blading, NASA Technical Paper 1493,
1979.

LIST OF FIGURES

Fig. 1 The Newton-Raphson iteration scheme
Fig. 2 A horizontal slope may cause a failure
Fig. 3 A local minimum may cause a failure
Fig. 4 A vertical slope near a root may cause a failure
Fig. 5 A multiple root may cause a failure
Fig. 6 Example of SOCRATES’ turbomachine design

environment – single stage fan with cone
Fig. 7 Typical overall convergence history during code

execution for the performance analysis of a 2-stage
compressor

Fig. 8 Typical convergence history with DCC algorithm
intervention after a divergent solution

Fig. 9 Typical convergence history with DCC algorithm
intervention to achieve an even smaller error
tolerance (absolute value)

Fig. 10 Typical convergence history with DCC algorithm
intervention to achieve an even smaller error
tolerance (absolute value)

Fig. 11 Typical convergence history using Newton’s method
with no DCC algorithm intervention

Fig. 12 Typical convergence history with DCC algorithm
intervention after a divergent solution

Fig. 13 3D model of the NASA two-stage compressor in
SOCRATES

Fig. 14 Inlet meridional velocity variation from hub to tip at
50% DP rotational speed

Fig. 15 Outlet meridional velocity variation from hub to tip at
50% DP rotational speed

Fig. 16 Inlet absolute velocity variation from hub to tip at
50% DP rotational speed

Fig. 17 Outlet absolute velocity variation from hub to tip at
50% DP rotational speed

LIST OF TABLES

Table 1 NASA two-stage compressor design overall
parameters

13

APPENDIX 1 - NOMENCLATURE

Abbreviations

DP Design Point
REE Radial Equilibrium Equation
SLC Streamline Curvature
2D Two-Dimensional

Symbols

A, B, C Differential equation terms
F Force
H Enthalpy
I Rothalpy
P Pressure
S Entropy
T Temperature
V Absolute air velocity
W Relative velocity
c Constant of integration
f Function, factor
i,j,k Unit vectors
m Meridional direction
r Radius, radial direction, root
rc Radius of curvature
s Tangential along the blade edge direction
z Axial direction

Greek Symbols

α Absolute flow angle
β Relative flow angle
γ Sweep angle
ε streamline slope angle
λ Lean angle
ρ Density

ω Angular speed

Subscripts

D Drag
P Pressure
j Streamline counter
m Meridional direction
n Normal direction
r Radial direction
relax Relaxation
root The solution of a function
w Whirl direction
z Axial direction

