551 research outputs found
Thermoresponsive worms for expansion and release of human embryonic stem cells
The development of robust suspension cultures of human embryonic stem cells (hESCs) without the use of cell membrane disrupting enzymes or inhibitors is critical for future clinical applications in regenerative medicine. We have achieved this by using long, flexible, and thermoresponsive polymer worms decorated with a recombinant vitronectin subdomain that bridge hESCs, aiding in hESC's natural ability to form embryoid bodies (EBs) and satisfying their inherent requirement for cell-cell and cell-extracellular matrix contact. When the EBs reached an optimal upper size where cytokine and nutrient penetration becomes limiting, these long and flexible polymer worms facilitated EB breakdown via a temperature shift from 37 to 25 C. The thermoresponsive nature of the worms enabled a cyclical dissociation and propagation of the cells. Repeating the process for three cycles (over eighteen days) provided a >30-fold expansion in cell number while maintaining pluripotency, thereby providing a simple, nondestructive process for the 3D expansion of hESC
A new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2
Scab, caused by the ascomycete fungus Venturia pirina, leads to severe damage on European pear varieties resulting in a loss of commercial value and requiring frequent use of fungicides. Identifying scab resistance genes, developing molecular markers linked to these genes and establishing marker-assisted selection would be an effective way to improve European pear breeding for scab resistance. Most of the European pear cultivars (Pyrus communis) are currently reported to be sensitive. The pear cultivar ‘Navara’ was shown to carry a major scab resistance gene whose phenotypic expression in seedling progenies was a typical stellate necrosis symptom. The resistance gene was called Rvp1, for resistance to V. pirina, and was mapped on linkage group 2 of the pear genome close to microsatellite marker CH02b10. This genomic region is known to carry a cluster of scab resistance genes in apple indicating a first functional synteny for scab resistance between apple and pear
CDK12 globally stimulates RNA polymerase II transcription elongation and carboxyl-terminal domain phosphorylation
Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD
Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the''Guard-Hypothesis,'' R proteins (the ``guards'') can sense modification of target molecules in the host (the ``guardees'') by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the ``guardee-effector'' interface for pathogen recognition, natural selection acts on the ``guard-guardee'' interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen
A new scab-like disease on apple caused by the formerly saprotrophic fungus Venturia asperata
Atypical scab-like symptoms were reported for the first time in 2007 in the south of France on fruits of apple cultivars carrying the Rvi6 (=Vf) major resistance gene to Venturia inaequalis. With microscopic observations, nucleotide sequence data and pathological tests, it was shown that the causal agent was Venturia asperata. Scanning electron microscopy was used to compare its infection process and conidiogenesis to those of Venturia inaequalis on apple and Venturia pirina on pear. Venturia asperata produced fewer hyphae and fewer spores than the two other Venturia species, and resulted in weaker symptoms. This fungal species was previously described as a saprotroph on apple leaf litter. This is the first report of damage on apple fruits caused by V. asperata. Changes in host and cultural practices may have created a new context favourable for the emergence of this pathogen. It was also detected on symptomless leaves and on overwintered leaves on the ground. Pseudothecia developed on overwintered leaves and released ascospores over a 2-month period from the end of March until the end of May, suggesting that the fungus is able to survive from season to season. However, it is not yet known if this new disease will establish over coming years and become an emergent disease
Qualitative Real-Time Schlieren and Shadowgraph Imaging of Human Exhaled Airflows: An Aid to Aerosol Infection Control
Using a newly constructed airflow imaging system, airflow patterns were visualized that were associated with common, everyday respiratory activities (e.g. breathing, talking, laughing, whistling). The effectiveness of various interventions (e.g. putting hands and tissues across the mouth and nose) to reduce the potential transmission of airborne infection, whilst coughing and sneezing, were also investigated. From the digital video footage recorded, it was seen that both coughing and sneezing are relatively poorly contained by commonly used configurations of single-handed shielding maneuvers. Only some but not all of the forward momentum of the cough and sneeze puffs are curtailed with various hand techniques, and the remaining momentum is disseminated in a large puff in the immediate vicinity of the cougher, which may still act as a nearby source of infection. The use of a tissue (in this case, 4-ply, opened and ready in the hand) proved to be surprisingly effective, though the effectiveness of this depends on the tissue remaining intact and not ripping apart. Interestingly, the use of a novel ‘coughcatcher’ device appears to be relatively effective in containing coughs and sneezes. One aspect that became evident during the experimental procedures was that the effectiveness of all of these barrier interventions is very much dependent on the speed with which the user can put them into position to cover the mouth and nose effectively
Estimating Parameters of Speciation Models Based on Refined Summaries of the Joint Site-Frequency Spectrum
Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is challenging to distinguish between recent divergence with no (or very low) inter-population gene flow and older splitting events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-frequency spectrum (JSFS). We have developed two improvements of these methods based on a more extensive use of the JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method, we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for divergence time and migration rates for low (around 10) and high (around 100) numbers of loci. Focusing on cases with low numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time and migration rates are more precise than existing approaches
Mutant Ras and inflammation-driven skin tumorigenesis is suppressed via a JNK-iASPP-AP1 axis
Concurrent mutation of a RAS oncogene and the tumor suppressor p53 is common in tumorigenesis, and inflammation can promote RAS-driven tumorigenesis without the need to mutate p53. Here, we show, using a well-established mutant RAS and an inflammation-driven mouse skin tumor model, that loss of the p53 inhibitor iASPP facilitates tumorigenesis. Specifically, iASPP regulates expression of a subset of p63 and AP1 targets, including genes involved in skin differentiation and inflammation, suggesting that loss of iASPP in keratinocytes supports a tumor-promoting inflammatory microenvironment. Mechanistically, JNK-mediated phosphorylation regulates iASPP function and inhibits iASPP binding with AP1 components, such as JUND, via PXXP/SH3 domain-mediated interaction. Our results uncover a JNK-iASPP-AP1 regulatory axis that is crucial for tissue homeostasis. We show that iASPP is a tumor suppressor and an AP1 coregulator
Surf zone hazards and injuries on beaches in SW France
Surf zone injuries (SZIs) are common worldwide, yet limited data is available for many geographical regions, including Europe. This study provides the first preliminary overview of SZIs along approximately 230 km of hazardous surf beaches in SW France during the summer season. A total of 2523 SZIs over 186 sample days during the summers of 2007, 2009 and 2015 were analysed. Documented injury data included date and time; beach location; flag colour; outside/inside of the bathing zone; age, gender, country and home postal code of the victim; activity; cause of injury; injury type and severity. Injuries sustained ranged from mild contusion to fatal drowning, including severe spinal injuries, wounds and luxation. While the most severe injuries (drowning) were related to rip currents, a large number of SZIs occurred as a result of shore-break waves (44.6%; n = 1125) and surfing activity (31.0%; n = 783) primarily inside and outside of lifeguard patrolled bathing zones, respectively. Victims were primarily French living more than 40 km from the beach (75.9% of the reported addresses; n = 1729), although a substantial number of victims originated from Europe (14.7% of the addresses reported; n = 335), including The Netherlands (44.2%; n = 148), Germany (26.3%; n = 88) and Belgium (12.5%; n = 49). The predominant age group involved in the incidents was between 10-25 years (54.5%; n = 1376) followed by 35-50 years (22.6%; n = 570), with the majority of SZIs involving males (69.6%, n = 1617). Despite the large predominance (74.1%; n = 33) of males involved in the most severe drowning incidents, all of which occurred outside the bathing zone, a surprisingly large proportion of females (48.0%; n = 133) experienced milder drowning incidents involving only minor to moderate respiratory impairment, peaking at 58.2% (n = 85) within the age group 10-25. The spine/cervical injury population is very young, with 58.5% (n = 313) within the age group 10-20. Specific injuries tended to occur in clusters (e.g. rip current drowning or shore-break injury) with particular days prone to rip-current drowning or hazardous shore-break waves, suggesting the potential to predict level of risk to beachgoers based on basic weather and marine conditions. This study calls for increased social-based beach safety research in France and the development of more effective public awareness campaigns to highlight the surf zone hazards, even within a supervised bathing zone. These campaigns should be targeted towards young males and females, in order to reduce the number of injuries and drownings occurring on beaches in SW France.Marier les objectifs de défense côtière avec ceux de la protection du milieu naturel grâce aux dunes sableuse
- …