2 research outputs found
Aplicación anticipada de fósforo : efectos sobre la disponibilidad del nutriente, eficiencia de uso y rendimiento.
Tradicionalmente el P es colocado en la línea de siembra, aunque las cantidades que pueden agregarse son relativamente bajas por razones operativas y riesgos de fitotoxicidad. Las aplicaciones al voleo podrían presentar una menor eficiencia, pero permiten agregar mayores dosis. Localmente existen experiencias que comparan aplicaciones en línea y anticipadas al voleo con una única dosis, pero no hay estudios que evalúen comparativamente las aplicaciones al voleo a la siembra y antes de la siembra con un rango de dosis. El tiempo prolongado de contacto entre el nutriente y el suelo incrementaría los procesos de fijación, aunque esto podría ser compensado por una mayor incorporación. Los objetivos de este trabajo fueron evaluar cambios del P disponible a inicios del ciclo del cultivo de maíz, las respuestas y eficiencias agronómicas y de recuperación del P para las distintas dosis, momentos y formas de aplicación de fertilizante fosforado. Para responder a los objetivos se realizaron tres ensayos de campo en Hapludoles del Partido de Junín y se evaluaron 9 tratamientos: del 0 a 8 corresponden a un factorial con cuatro dosis (10, 20, 30 y 40 kg P ha -1) aplicados al voleo y dos momentos (anticipado -90 días antes de la siembra del maíz- y al momento de la siembra), un testigo y un tratamiento con P en línea (con la dosis de 20 kg P ha-1). Se midieron: contenido de P disponible, biomasa aérea, contenido de P absorbido y rendimiento de maíz. Con la fertilización anticipada hubo una tendencia a menores contenidos de P de 0-5 cm a inicios del ciclo del cultivo, pero no se observaron diferencias en crecimiento de maíz en ningún estado fenológico. No se detectaron diferencias en rendimiento, sin embargo se observó una tendencia a respuestas superiores con las aplicaciones a la siembra sólo con las dosis más altas. Se registraron efectos de las dosis sobre la producción de biomasa aérea, el rendimiento en grano y el contenido de P disponible. Las eficiencias de recuperación (ERP) y eficiencias agronómicas (AE) no difirieron entre momentos de aplicación, sin embargo las EA fueron un 26 por ciento superiores con las aplicaciones a la siembra. Las ERP medias halladas, por el método de la diferencia, fueron de 6,5 por ciento con el cultivo en sexta hoja (V6) y 3,2 por ciento en madurez fisiológica (MF). No se detectaron diferencias según el método de ubicación del P
Attainable yield and soil texture as drivers of maize response to nitrogen: a synthesis analysis for Argentina
The most widely used approach for prescribing fertilizer nitrogen (N) recommendations in maize (Zea Mays L.) in Argentina is based on the relationship between grain yield and the available N (kg N ha−1), calculated as the sum of pre-plant soil NO3--N at 0−60 cm depth (PPNT) plus fertilizer N (Nf). However, combining covariates related to crop N demand and soil N supply at a large national scale remains unexplored for this model. The aim of this work was to identify yield response patterns associated to yield environment (crop N demand driver) and soil texture (soil N supply driver). A database of 788 experiments (1980−2016) was gathered and analyzed combining quadratic-plateau regression models with bootstrapping to address expected values and variability on response parameters and derived quantities. The database was divided into three groups according to soil texture (fine, medium and coarse) and five groups based on the empirical distribution of maximum observed yields (from Very-Low = 13.1 Mg ha−1) resulting in fifteen groups. The best model included both, attainable yield environment and soil texture. The yield environment mainly modified the agronomic optimum available N (AONav), with an expected increase rate of ca. 21.4 kg N Mg attainable yield−1, regardless of the soil texture. In Very-Low yield environments, AONav was characterized by a high level of uncertainty, related to a poor fit of the N response model. To a lesser extent, soil texture modified the response curvature but not the AONav, mainly by modifying the response rate to N (Fine > Medium > Coarse), and the N use efficiencies. Considering hypothetical PPNT levels from 40 to 120 kg N ha−1, the expected agronomic efficiency (AENf) at the AONav varied from 7 to 31, and 9–29 kg yield response kg fertilizer N (Nf)−1, for Low and Very-High yield environments, respectively. Similarly, the expected partial factor productivity (PFPNf) at the AONav ranged from 62 to 158, and 55–99 kg yield kg Nf−1, for the same yield environments. These results highlight the importance of combining attainable yield environment and soil texture metadata for refining N fertilizer recommendations. Acknowledging the still low N fertilizer use in Argentina, space exists to safely increasing N fertilizer rates, steering the historical soil N mining profile to a more sustainable agro-environmental scenario in the Pampas.Fil: Correndo, Adrián A.. Kansas State University; Estados UnidosFil: Gutiérrez Boem, Flavio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: García, Fernando O.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Alvarez, Carolina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Álvarez, Cristian. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Angeli, Ariel. I+D CREA; ArgentinaFil: Barbieri, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Barraco, Mirian Raquel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Berardo, Angel. Laboratorio de Suelo S.a.; ArgentinaFil: Boxler, Miguel. Private Consultant; ArgentinaFil: Calviño, Pablo Antonio. Private Consultant; ArgentinaFil: Capurro, Julia E.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Carta, Héctor. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Caviglia, Octavio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Diaz Zorita, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Agronomía; ArgentinaFil: Díaz Valdéz, Santiago. Bayer Crop Science; ArgentinaFil: Echeverría, Hernán E.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Espósito, Gabriel Pablo. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Ferrari, Manuel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Ferraris, Gustavo Nestor. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Gambaudo, Sebastian Pedro. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; Argentina. Private Consultant; ArgentinaFil: Gudelj, Vicente. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Ioele, Juan P.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Melchiori, Ricardo J. M.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Molino, Josefina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Orcellet, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Pagani, Agustin. Clarion Inc.; ArgentinaFil: Pautasso, Juan Manuel. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Reussi Calvo, Nahuel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Laboratorio de Suelo S.a.; ArgentinaFil: Redel, Matías. Private Consultant; ArgentinaFil: Rillo, Sergio. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Rimski-korsakov, Helena. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Sainz Rozas, Hernan Rene. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Saks, Matías. Bunge Argentina S.A; ArgentinaFil: Tellería, María Guadalupe. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Ventimiglia, Luis. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Zorzín, Jose L.. Private Consultant; ArgentinaFil: Zubillaga de Sanahuja, María de Las Mercedes. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Salvagiotti, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentin