31 research outputs found

    Large phonon-drag enhancement induced by narrow quantum confinement at the LaAlO3/SrTiO3 interface

    Full text link
    The thermoelectric power of the two-dimensional electron system (2DES) at the LaAlO3/SrTiO3 interface is explored below room temperature, in comparison with that of Nb-doped SrTiO3 single crystals. For the interface we find a region below T =50 K where thermopower is dominated by phonon-drag, whose amplitude is hugely amplified with respect to the corresponding bulk value, reaching values ~mV/K and above. The phonon-drag enhancement at the interface is traced back to the tight carrier confinement of the 2DES, and represents a sharp signature of strong electron-acoustic phonon coupling at the interface

    Thermoelectric behavior of Ruddlesden-Popper series iridates

    Full text link
    The goal of this work is studying the evolution of thermoelectric transport across the members of the Ruddlesden-Popper series iridates Srn+1IrnO3n+1, where a metal-insulator transition driven by bandwidth change occurs, from the strongly insulating Sr2IrO4 to the metallic non Fermi liquid behavior of SrIrO3. Sr2IrO4 (n=1), Sr3Ir2O7 (n=2) and SrIrO3 (n=inf.) polycrystals are synthesized at high pressure and characterized by structural, magnetic, electric and thermoelectric transport analyses. We find a complex thermoelectric phenomenology in the three compounds. Thermal diffusion of charge carriers accounts for the Seebeck behavior of Sr2IrO4, whereas additional drag mechanisms come into play in determining the Seebeck temperature dependence of Sr3Ir2O7 and SrIrO3. These findings reveal close relationship between magnetic, electronic and thermoelectric properties, strong coupling of charge carriers with phonons and spin fluctuations as well as relevance of multiband description in these compounds.Comment: main paper + supplementary informatio

    Giant Oscillating Thermopower at Oxide Interfaces

    Get PDF
    Understanding the nature of charge carriers at the LaAlO3/SrTiO3 interface is one of the major open issues in the full comprehension of the charge confinement phenomenon in oxide heterostructures. Here, we investigate thermopower to study the electronic structure in LaAlO3/SrTiO3 at low temperature as a function of gate field. In particular, under large negative gate voltage, corresponding to the strongly depleted charge density regime, thermopower displays record-high negative values of the order of 10^4 - 10^5 microV/K, oscillating at regular intervals as a function of the gate voltage. The huge thermopower magnitude can be attributed to the phonon-drag contribution, while the oscillations map the progressive depletion and the Fermi level descent across a dense array of localized states lying at the bottom of the Ti 3d conduction band. This study is the first direct evidence of a localized Anderson tail in the two-dimensional (2D) electron liquid at the LaAlO3/SrTiO3 interface.Comment: Main text: 28 pages and 3 figures; Supplementary information: 29 pages, 5 figures and 1 tabl

    STM Study of Exfoliated Few Layer Black Phosphorus Annealed in Ultrahigh Vacuum

    Full text link
    Black Phosphorus (bP) has emerged as an interesting addition to the category of two-dimensional materials. Surface-science studies on this material are of great interest, but they are hampered by bP's high reactivity to oxygen and water, a major challenge to scanning tunneling microscopy (STM) experiments. As a consequence, the large majority of these studies were performed by cleaving a bulk crystal in situ. Here we present a study of surface modifications on exfoliated bP flakes upon consecutive annealing steps, up to 550 C, well above the sublimation temperature of bP. In particular, our attention is focused on the temperature range 375 C - 400 C, when sublimation starts, and a controlled desorption from the surface occurs alongside with the formation of characteristic well-aligned craters. There is an open debate in the literature about the crystallographic orientation of these craters, whether they align along the zigzag or the armchair direction. Thanks to the atomic resolution provided by STM, we are able to identify the orientation of the craters with respect to the bP crystal: the long axis of the craters is aligned along the zigzag direction of bP. This allows us to solve the controversy, and, moreover, to provide insight in the underlying desorption mechanism leading to crater formation

    Study of equilibrium carrier transfer in LaAlO3/SrTiO3 from an epitaxial La1 12x Sr x MnO3 ferromagnetic layer

    Get PDF
    Using x-ray magnetic circular dichroism and ab-initio calculations, we explore the La1-xSrxMnO3/LaAlO3/SrTiO3 (001) heterostructure as a mean to induce transfer of spin polarized carriers from ferromagnetic La1-xSrxMnO3 layer into the 2DEG (two-dimensional electron gas) at the LaAlO3/SrTiO3 interface. By out-of-plane transport measurements, the tunneling across the LaAlO3 barrier is also analyzed. Our results suggest small or vanishing spin-polarization for the 2DEG: magnetic dichroism does not reveal a neat signal on Ti atoms, while calculations predict, for the pristine stoichiometric interface, a small spin-resolved mobile charge of 2.5 x 10(13) cm(-2) corresponding to a magnetic moment of 0.038 mu(B) per Ti atom, tightly confined within the single SrTiO3 layer adjacent to LaAlO3. Such a small magnetization is hard to be detected experimentally and perhaps not robust enough to survive to structural disorder, native doping, or La1-xSrxMnO3 dead-layer effects. Our analysis suggests that, while some spin-diffusion cannot be completely ruled out, the use of ferromagnetic La1-xSrxMnO3 epilayers grown on-top of LaAlO3/SrTiO3 is not effective enough to induce robust spin-transport properties in the 2DEG. The examined heterostructure is nevertheless an excellent test-case to understand some fundamental aspects of the spin-polarized charge transfer in 2D wells

    Thermal Scanning-Probe Lithography for Broad-Band On-Demand Plasmonic Nanostructures on Transparent Substrates

    No full text
    Thermal scanning-probe lithography (t-SPL) is a high-resolution nanolithography technique that enables the nanopatterning of thermosensitive materials by means of a heated silicon tip. It does not require alignment markers and gives the possibility to assess the morphology of the sample in a noninvasive way before, during, and after the patterning. In order to exploit t-SPL at its peak performances, the writing process requires applying an electric bias between the scanning hot tip and the sample, thereby restricting its application to conductive, optically opaque, substrates. In this work, we show a t-SPL-based method, enabling the noninvasive high-resolution nanolithography of photonic nanostructures onto optically transparent substrates across a broad-band visible and near-infrared spectral range. This was possible by intercalating an ultrathin transparent conductive oxide film between the dielectric substrate and the sacrificial patterning layer. This way, nanolithography performances comparable with those typically observed on conventional semiconductor substrates are achieved without significant changes of the optical response of the final sample. We validated this innovative nanolithography approach by engineering periodic arrays of plasmonic nanoantennas and showing the capability to tune their plasmonic response over a broad-band visible and near-infrared spectral range. The optical properties of the obtained systems make them promising candidates for the fabrication of hybrid plasmonic metasurfaces supported onto fragile low-dimensional materials, thus enabling a variety of applications in nanophotonics, sensing, and thermoplasmonics
    corecore