17 research outputs found

    A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13).

    Get PDF
    BACKGROUND: Rhinovirus infection is a major cause of asthma exacerbations. OBJECTIVES: We studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-induced asthma exacerbations. METHODS: We used nasosorption on days 0, 2-5 and 7 and bronchosorption at baseline and day 4 to sample mucosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma (n=28) and healthy non-atopic controls (n=11), by using a synthetic absorptive matrix and measuring levels of 34 cytokines and chemokines using a sensitive multiplex assay. RESULTS: Following rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and lower peak expiratory flows compared to controls (all P<0.05). Asthmatics also developed higher nasal lining fluid levels of an anti-viral pathway (including IFN-γ, IFN-λ/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under curve day 0-7, all P<0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P<0.01) and levels increased by days 3 and 4 (P<0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels over 7days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asthmatics IFN-γ, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infection (all P<0.05). CONCLUSIONS: Precision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption have potential to define asthma endotypes in stable disease and at exacerbation

    Vitamin D receptor genotype influences risk of upper respiratory infection.

    Get PDF
    SNP in the vitamin D receptor (VDR) gene is associated with risk of lower respiratory infections. The influence of genetic variation in the vitamin D pathway resulting in susceptibility to upper respiratory infections (URI) has not been investigated. We evaluated the influence of thirty-three SNP in eleven vitamin D pathway genes (DBP, DHCR7, RXRA, CYP2R1, CYP27B1, CYP24A1, CYP3A4, CYP27A1, LRP2, CUBN and VDR) resulting in URI risk in 725 adults in London, UK, using an additive model with adjustment for potential confounders and correction for multiple comparisons. Significant associations in this cohort were investigated in a validation cohort of 737 children in Manchester, UK. In all, three SNP in VDR (rs4334089, rs11568820 and rs7970314) and one SNP in CYP3A4 (rs2740574) were associated with risk of URI in the discovery cohort after adjusting for potential confounders and correcting for multiple comparisons (adjusted incidence rate ratio per additional minor allele ≥1·15, P for trend ≤0·030). This association was replicated for rs4334089 in the validation cohort (P for trend=0·048) but not for rs11568820, rs7970314 or rs2740574. Carriage of the minor allele of the rs4334089 SNP in VDR was associated with increased susceptibility to URI in children and adult cohorts in the United Kingdom.National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Ref. no. RP-PG-0407-10398). Chair from Asthma UK (no. CH11SJ) and Medical Research Council Centre (grant no. G1000758)

    Pathogen Sensing Pathways in Human Embryonic Stem Cell Derived-Endothelial Cells: Role of NOD1 Receptors.

    Get PDF
    Human embryonic stem cell-derived endothelial cells (hESC-EC), as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR) Toll-like receptor (TLR)-4 and nucleotide-binding oligomerisation domain-containing protein (NOD)-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC). HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC), and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage

    Assessing the association of early life antibiotic prescription with asthma exacerbations, impaired antiviral immunity, and genetic variants in 17q21:a population-based birth cohort study

    No full text
    SummaryBackgroundThe relationship between early-life antibiotic use and the development of wheeze and asthma has been reported in several studies but might arise as a consequence of bias rather than causal relationship. We investigated the association between antibiotic prescription and subsequent development of atopy, wheeze, and asthma exacerbations, and the relation of early life antibiotic prescription with anti-infective immunity and genetic variants on asthma susceptibility locus 17q21.MethodsChildren in a population-based birth cohort were followed from birth to age 11 years. Information on antibiotic prescription, wheeze, and asthma exacerbations was extracted from medical records, and the effect of antibiotic prescription assessed with longitudinal analyses. We assessed immune responses of peripheral blood mononuclear cells, taken at age 11 years, to viruses (rhinovirus and respiratory syncytial virus; RSV) and bacteria (Haemophilus influenzae and Streptococcus pneumoniae) in children who either received at least one or no antibiotic prescriptions in infancy. Finally, we assessed the association of 17q21 polymorphisms with antibiotic prescription.FindingsOf 984 families who gave consent, we extracted data for 916 children. We noted significantly higher risk of physician-confirmed wheezing after antibiotic prescription (hazard ratio [HR] 1·71, 95% CI 1·32–2·23; p<0·0001) and severe wheeze or asthma exacerbation after antibiotic prescription (HR 2·26, 95% CI 1·03–4·94; p=0·041). In children who wheezed, the hazards of exacerbations (2·09, 1·51–2·90; p<0·0001) and admissions to hospital (2·64, 1·49–4·70; p=0·0009) were significantly increased in the 2 years after the first antibiotic prescription. Children who received antibiotics in infancy had significantly lower induction of cytokines, which are important in host defence against virus infections to both RSV and rhinovirus; there were no differences in antibacterial responses. Variants in 17q21 were associated with an increased risk of early life antibiotic prescription.InterpretationThe association between antibiotics and asthma might arise through a complex confounding by indication. Hidden factors that may increase the likelihood of both early life antibiotic prescription and later asthma are an increased susceptibility to viral infections consequent upon impaired antiviral immunity and genetic variants on 17q21.FundingMoulton Charitable Foundation and Medical Research Council
    corecore