148 research outputs found

    Time and volume based optimal pricing strategies for telecommunication networks

    Get PDF
    In the recent past, there have been several initiatives by major network providers such as Turk Telekom lead the industry towards network capacity distribution in Turkey. In this study, we use a monopoly pricing model to examine the optimal pricing strategies for “pay-per-volume” and “pay-per-time” based leasing of data networks. Traditionally, network capacity distribution includes short/long term bandwidth and/or usage time leasing. Each consumer has a choice to select volume based pricing or connection time based pricing. When customers choose connection time based pricing, their optimal behavior would be utilizing the bandwidth capacity fully therefore it can cause network to burst. Also, offering pay-per-volume scheme to the consumer provides the advantage of leasing the excess capacity for other potential customers for network provider. We examine the following issues in this study: (i) What are the extra benefits to the network provider for providing the volume based pricing scheme? and (ii) Does the amount of demand (number of customers enter the market) change? The contribution of this paper is to show that pay-per-volume is a viable alternative for a large number of customers, and that judicious pricing for pay-per-volume is profitable for the network provider

    The effects of qos level degradation cost on provider selection and task allocation model in telecommunication networks

    Get PDF
    Firms acquire network capacity from multiple suppliers which offer different Quality of Service (QoS) levels. After acquisition, day-to-day operations such as video conferencing, voice over IP and data applications are allocated between these acquired capacities by considering QoS requirement of each operation. In optimal allocation scheme, it is generally assumed each operation has to be placed into resource that provides equal or higher QoS Level. Conversely, in this study it is showed that former allocation strategy may lead to suboptimal solutions depending upon penalty cost policy to charge degradation in QoS requirements. We model a cost minimization problem which includes three cost components namely capacity acquisition, opportunity and penalty due to loss in QoS

    Probe of extra dimensions in gamma q->gamma q at the LHC

    Full text link
    We have examined TeV scale effects of extra spatial dimensions through the processes gamma q-> gamma q where q=u,d,c,s,b, anti-u, anti-d, anti-c, anti-s, anti-b. These processes have been treated in a photon-proton collision via the main reaction pp-> p gamma p-> p gamma qX at the LHC. We have employed equivalent photon approximation for incoming photon beams and performed statistical analysis for various forward detector acceptances.Comment: 17 pages, 5 figure

    The Effects of QoS Level Degradation Cost on Provider Selection and Task Allocation Model in Telecommunication Networks

    Get PDF
    ─Abstract ─ Firms acquire network capacity from multiple suppliers which offer different Quality of Service (QoS) levels. After acquisition, day-to-day operations such as video conferencing, voice over IP and data applications are allocated between these acquired capacities by considering QoS requirement of each operation. In optimal allocation scheme, it is generally assumed each operation has to be placed into resource that provides equal or higher QoS Level. Conversely, in this study it is showed that former allocation strategy may lead to suboptimal solutions depending upon penalty cost policy to charge degradation in QoS requirements. We model a cost minimization problem which includes three cost components namely capacity acquisition, opportunity and penalty due to loss in QoS

    Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values

    Get PDF
    PURPOSE: To compare the relationship of Octopus perimeter cluster mean-defect (cluster MD) values with the spatially corresponding optical coherence tomography (OCT) sector peripapillary angioflow vessel-density (PAFD) and sector retinal nerve fiber layer thickness (RNFLT) values. METHODS: High quality PAFD and RNFLT images acquired on the same day with the Angiovue/RTVue-XR Avanti OCT (Optovue Inc., Fremont, USA) on 1 eye of 27 stable early-to-moderate glaucoma, 22 medically controlled ocular hypertensive and 13 healthy participants were analyzed. Octopus G2 normal visual field test was made within 3 months from the imaging. RESULTS: Total peripapillary PAFD and RNFLT showed similar strong positive correlation with global mean sensitivity (r-values: 0.6710 and 0.6088, P<0.0001), and similar (P = 0.9614) strong negative correlation (r-values: -0.4462 and -0.4412, P</=0.004) with global MD. Both inferotemporal and superotemporal sector PAFD were significantly (</=0.039) lower in glaucoma than in the other groups. No significant difference between the corresponding inferotemporal and superotemporal parameters was seen. The coefficient of determination (R2) calculated for the relationship between inferotemporal sector PAFD and superotemporal cluster MD (0.5141, P<0.0001) was significantly greater than that between inferotemporal sector RNFLT and superotemporal cluster MD (0.2546, P = 0.0001). The R2 values calculated for the relationships between superotemporal sector PAFD and RNFLT, and inferotemporal cluster MD were similar (0.3747 and 0.4037, respectively, P<0.0001). CONCLUSION: In the current population the relationship between inferotemporal sector PAFD and superotemporal cluster MD was strong. It was stronger than that between inferotemporal sector RNFLT and superotemporal cluster MD. Further investigations are necessary to clarify if our results are valid for other populations and can be usefully applied for glaucoma research
    corecore