3 research outputs found

    Fate predetermination of cardiac myocytes during zebrafish heart regeneration

    Get PDF
    Adult zebrafish have the remarkable ability to regenerate their heart upon injury, a process that involves limited dedifferentiation and proliferation of spared cardiomyocytes (CMs), and migration of their progeny. During regeneration, proliferating CMs are detected throughout the myocardium, including areas distant to the injury site, but whether all of them are able to contribute to the regenerated tissue remains unknown. Here, we developed a CM-specific, photoinducible genetic labelling system, and show that CMs labelled in embryonic hearts survive and contribute to all three (primordial, trabecular and cortical) layers of the adult zebrafish heart. Next, using this system to investigate the fate of CMs from different parts of the myocardium during regeneration, we show that only CMs immediately adjacent to the injury site contributed to the regenerated tissue. Finally, our results show an extensive predetermination of CM fate during adult heart regeneration, with cells from each myocardial layer giving rise to cells that retain their layer identity in the regenerated myocardium. Overall, our results indicate that adult heart regeneration in the zebrafish is a rather static process governed by short-range signals, in contrast to the highly dynamic plasticity of CM fates that takes place during embryonic heart regeneration

    Bioengineering approach to study the role of cell migration during zebrafish heart regneration

    No full text
    Zebrafish heart regeneration remains one of the most interesting phenomena of the 21st century. Considering the extremely high rate of deaths due to cardiovascular diseases in the developed countries, 1 out of every 3 people, understanding natural cardiac regeneration would address a worldwide challenge. Even though many aspects of zebrafish heart regeneration have been elucidated, there are still many open questions to be answered. Among these, the work presented here focuses on understanding cell migration mechanisms of cardiomyocytes and epicardial cells during heart regeneration. The first approach involves the development of a cardiomyocyte-specific, photoinducible Cre/lox genetic labeling system and its use in lineage tracing of embryonic cardiomyocytes during heart development and regeneration. By using this method we showed that cardiomyocytes labeled in embryonic hearts survive and contribute to all myocardial layers of the adult zebrafish heart. Moreover, lineage tracing during regeneration showed that only cardiomyocytes immediately adjacent to the injury site contribute to the regeneration, and cardiomyocyte fate is extensively predetermined, with cells from each myocardial layer giving rise to cells that retain their layer identity in the regenerated myocardium. Then, we showed that by coupling this labeling system to three-photon microscopy activation, we can perform prospective labeling, and increase the spatial resolution of our labeling system. Three-photon illumination has been used for in vivo imaging of deep structures, but whether it can be used for photo-activation had never been tested. Here we showed, theoretically and experimentally for the first time, that three-photon illumination is suitable for activating molecules in deep tissues and improving our system in terms of spatial resolution and prospective labeling. The final approach consisted on developing an ex vivo experimental set up in order to investigate physical characteristics of epicardial cell migration during zebrafish heart regeneration. This method allowed us to measure physical features that are essential for cell migration such as migration velocity and traction forces of the epicardial explants obtained from zebrafish hearts. All the approaches developed in this thesis offer new bioengineering tools to study zebrafish heart regeneration, and reveal new insights on this process. Moreover, these techniques present wide applicability to perform lineage tracing of other cell types during zebrafish heart regeneration or in other biological processes.Los humanos tienen una capacidad muy limitada para regenerar el coraz贸n y, como consecuencia de ello, una de cada tres personas fallece debido a enfermedades card铆acas. En cambio, el pez cebra tiene una enorme capacidad intr铆nseca para restaurar grandes porciones de su coraz贸n tras un da帽o, por lo que se ha convertido en uno de los modelos experimentales m谩s usados para investigar la regeneraci贸n del coraz贸n. Entender los mecanismos que controlan la regeneraci贸n card铆aca del pez cebra permitir谩 desarrollar estrategias para regenerar el coraz贸n humano y buscar soluciones a estas enfermedades. Bas谩ndonos en este gran objetivo, el trabajo que forma el estudio de esta tesis doctoral detalla algunas aproximaciones de bioingenier铆a dirigidas a estudiar el papel de la migraci贸n celular de los cardiomiocitos y de las c茅lulas del epicardio durante la regeneraci贸n del coraz贸n del pez cebra. La primera aproximaci贸n es un sistema de seguimiento del linaje de los cardiomiocitos del pez cebra para investigar su destino durante la regeneraci贸n cardiaca. Para esto, se desarroll贸 un sistema de marcado gen茅tico de linaje con triple especificidad, de tipo celular, temporal y espacial, que permiti贸 marcar los cardiomiocitos en diferentes partes del coraz贸n. Utilizando esta t茅cnica se demostr贸 que durante la regeneraci贸n s贸lo los cardiomiocitos inmediatamente adyacentes a la lesi贸n contribuyen al miocardio regenerado. A continuaci贸n, se utiliz贸 la iluminaci贸n multifot贸n de tres fotones para fotoactivar cardiomiocitos in vivo con el objetivo de aumentar la resoluci贸n espacial del marcado gen茅tico. En este trabajo se demostr贸 te贸ricamente y experimentalmente que la iluminaci贸n de tres-fotones supera problemas de dispersi贸n y es capaz de realizar la fotoactivaci贸n, convirti茅ndose en el primer ejemplo donde se consigue utilizar este tipo de iluminaci贸n para fotoactivar c茅lulas in vivo. El uso de la iluminaci贸n de tres fotones en combinaci贸n con el sistema de marcado gen茅tico fotoinducible permiti贸 marcar los cardiomiocitos de embriones de pez cebra de forma prospectiva. Por 煤ltimo, se desarroll贸 un sistema ex vivo para caracterizar el comportamiento migratorio de las c茅lulas del epicardio del coraz贸n del pez cebra con el fin de investigar las caracter铆sticas f铆sicas de la migraci贸n celular durante la regeneraci贸n. Este m茅todo permiti贸 medir las caracter铆sticas f铆sicas esenciales para la migraci贸n celular, tales como la velocidad migratoria y las fuerzas de tracci贸n en las c茅lulas del epicardio

    Bioengineering approach to study the role of cell migration during zebrafish heart regeneration

    Get PDF
    [eng] Zebrafish heart regeneration remains one of the most interesting phenomena of the 21st century. Considering the extremely high rate of deaths due to cardiovascular diseases in the developed countries, 1 out of every 3 people, understanding natural cardiac regeneration would address a worldwide challenge. Even though many aspects of zebrafish heart regeneration have been elucidated, there are still many open questions to be answered. Among these, the work presented here focuses on understanding cell migration mechanisms of cardiomyocytes and epicardial cells during heart regeneration. The first approach involves the development of a cardiomyocyte-specific, photoinducible Cre/lox genetic labeling system and its use in lineage tracing of embryonic cardiomyocytes during heart development and regeneration. By using this method we showed that cardiomyocytes labeled in embryonic hearts survive and contribute to all myocardial layers of the adult zebrafish heart. Moreover, lineage tracing during regeneration showed that only cardiomyocytes immediately adjacent to the injury site contribute to the regeneration, and cardiomyocyte fate is extensively predetermined, with cells from each myocardial layer giving rise to cells that retain their layer identity in the regenerated myocardium. Then, we showed that by coupling this labeling system to three-photon microscopy activation, we can perform prospective labeling, and increase the spatial resolution of our labeling system. Three-photon illumination has been used for in vivo imaging of deep structures, but whether it can be used for photo-activation had never been tested. Here we showed, theoretically and experimentally for the first time, that three-photon illumination is suitable for activating molecules in deep tissues and improving our system in terms of spatial resolution and prospective labeling. The final approach consisted on developing an ex vivo experimental set up in order to investigate physical characteristics of epicardial cell migration during zebrafish heart regeneration. This method allowed us to measure physical features that are essential for cell migration such as migration velocity and traction forces of the epicardial explants obtained from zebrafish hearts. All the approaches developed in this thesis offer new bioengineering tools to study zebrafish heart regeneration, and reveal new insights on this process. Moreover, these techniques present wide applicability to perform lineage tracing of other cell types during zebrafish heart regeneration or in other biological processes.[spa] Los humanos tienen una capacidad muy limitada para regenerar el coraz贸n y, como consecuencia de ello, una de cada tres personas fallece debido a enfermedades card铆acas. En cambio, el pez cebra tiene una enorme capacidad intr铆nseca para restaurar grandes porciones de su coraz贸n tras un da帽o, por lo que se ha convertido en uno de los modelos experimentales m谩s usados para investigar la regeneraci贸n del coraz贸n. Entender los mecanismos que controlan la regeneraci贸n card铆aca del pez cebra permitir谩 desarrollar estrategias para regenerar el coraz贸n humano y buscar soluciones a estas enfermedades. Bas谩ndonos en este gran objetivo, el trabajo que forma el estudio de esta tesis doctoral detalla algunas aproximaciones de bioingenier铆a dirigidas a estudiar el papel de la migraci贸n celular de los cardiomiocitos y de las c茅lulas del epicardio durante la regeneraci贸n del coraz贸n del pez cebra. La primera aproximaci贸n es un sistema de seguimiento del linaje de los cardiomiocitos del pez cebra para investigar su destino durante la regeneraci贸n cardiaca. Para esto, se desarroll贸 un sistema de marcado gen茅tico de linaje con triple especificidad, de tipo celular, temporal y espacial, que permiti贸 marcar los cardiomiocitos en diferentes partes del coraz贸n. Utilizando esta t茅cnica se demostr贸 que durante la regeneraci贸n s贸lo los cardiomiocitos inmediatamente adyacentes a la lesi贸n contribuyen al miocardio regenerado. A continuaci贸n, se utiliz贸 la iluminaci贸n multifot贸n de tres fotones para fotoactivar cardiomiocitos in vivo con el objetivo de aumentar la resoluci贸n espacial del marcado gen茅tico. En este trabajo se demostr贸 te贸ricamente y experimentalmente que la iluminaci贸n de tres-fotones supera problemas de dispersi贸n y es capaz de realizar la fotoactivaci贸n, convirti茅ndose en el primer ejemplo donde se consigue utilizar este tipo de iluminaci贸n para fotoactivar c茅lulas in vivo. El uso de la iluminaci贸n de tres fotones en combinaci贸n con el sistema de marcado gen茅tico fotoinducible permiti贸 marcar los cardiomiocitos de embriones de pez cebra de forma prospectiva. Por 煤ltimo, se desarroll贸 un sistema ex vivo para caracterizar el comportamiento migratorio de las c茅lulas del epicardio del coraz贸n del pez cebra con el fin de investigar las caracter铆sticas f铆sicas de la migraci贸n celular durante la regeneraci贸n. Este m茅todo permiti贸 medir las caracter铆sticas f铆sicas esenciales para la migraci贸n celular, tales como la velocidad migratoria y las fuerzas de tracci贸n en las c茅lulas del epicardio
    corecore