461 research outputs found
Stability of a hard-sphere binary quasicrystal
The stability of a quasicrystalline structure, recently obtained in a
molecular-dynamics simulation of rapid cooling of a binary melt, is analyzed
for binary hard-sphere mixtures within a density-functional approach. It is
found that this quasicrystal is metastable relative to crystalline and fluid
phases for diameter ratios above 0.83. Such trend is partially reversed for
lower diameter ratios, since the quasicrystal becomes stable with respect to
the crystal but does not reach a coexistence with the fluid.Comment: 14 pages, 6 eps figures included. Revised version to appear in Phil.
Mag.
Rescaled density expansions and demixing in hard-sphere binary mixtures
The demixing transition of a binary fluid mixture of additive hard spheres is
analyzed for different size asymmetries by starting from the exact low-density
expansion of the pressure. Already within the second virial approximation the
fluid separates into two phases of different composition with a lower consolute
critical point. By successively incorporating the third, fourth, and fifth
virial coefficients, the critical consolute point moves to higher values of the
pressure and to lower values of the partial number fraction of the large
spheres. When the exact low-density expansion of the pressure is rescaled to
higher densities as in the Percus-Yevick theory, by adding more exact virial
coefficients a different qualitative movement of the critical consolute point
in the phase diagram is found. It is argued that the Percus-Yevick factor
appearing in many empirical equations of state for the mixture has a deep
influence on the location of the critical consolute point, so that the
resulting phase diagram for a prescribed equation has to be taken with caution.Comment: 5 pages, 1 figure; to be published in The Journal of Chemical Physic
Stability of the hard-sphere icosahedral quasilattice
The stability of the hard-sphere icosahedral quasilattice is analyzed using
the differential formulation of the generalized effective liquid approximation.
We find that the icosahedral quasilattice is metastable with respect to the
hard-sphere crystal structures. Our results agree with recent findings by
McCarley and Ashcroft [Phys. Rev. B {\bf 49}, 15600 (1994)] carried out using
the modified weighted density approximation.Comment: 15 pages, 2 figures available from authors upon request, (revtex),
submitted to Phys. Rev.
Phase behaviour of additive binary mixtures in the limit of infinite asymmetry
We provide an exact mapping between the density functional of a binary
mixture and that of the effective one-component fluid in the limit of infinite
asymmetry. The fluid of parallel hard cubes is thus mapped onto that of
parallel adhesive hard cubes. Its phase behaviour reveals that demixing of a
very asymmetric mixture can only occur between a solvent-rich fluid and a
permeated large particle solid or between two large particle solids with
different packing fractions. Comparing with hard spheres mixtures we conclude
that the phase behaviour of very asymmetric hard-particle mixtures can be
determined from that of the large component interacting via an adhesive-like
potential.Comment: Full rewriting of the paper (also new title). 4 pages, LaTeX, uses
revtex, multicol, epsfig, and amstex style files, to appear in Phys. Rev. E
(Rapid Comm.
Characteristics of shock-induced boundary layer separation on nacelles under windmilling diversion conditions
The boundary layer on the external cowl of an aero-engine nacelle under windmilling diversion conditions is subjected to a notable adverse pressure gradient due to the interaction with a near-normal shock wave. Within the context of Computational Fluid Dynamics (CFD) methods, the correct representation of the characteristics of the boundary layer is a major challenge to capture the onset of the separation. This is important for the aerodynamic design of the nacelle as it may assist in the characterization of candidate designs. This work uses experimental data obtained from a quasi-2D rig configuration to provide an assessment of the CFD methods typically used within an industrial context. A range of operating conditions is investigated to assess the sensitivity of the boundary layer to changes in inlet Mach number and mass flow through a notional windmilling engine. Fully turbulent and transitional boundary layer computations are used to determine the characteristics of the boundary layer and the interaction with the shock on the nacelle cowl. The correlation between the onset of shock induced boundary layer separation and pre-shock Mach number is assessed and the boundary layer integral characteristics ahead of the shock and the post-shock recovery evaluated and quantified. Overall, it was found that the CFD is able to discern the onset of boundary layer separation for a nacelle under windmilling conditions
Phase behavior of a system of particles with core collapse
The pressure-temperature phase diagram of a one-component system, with
particles interacting through a spherically symmetric pair potential in two
dimensions is studied. The interaction consists of a hard core plus an
additional repulsion at low energies. It is shown that at zero temperature,
instead of the expected isostructural transition due to core collapse occurring
when increasing pressure, the system passes through a series of ground states
that are not triangular lattices. In particular, and depending on parameters,
structures with squares, chains, hexagons and even quasicrystalline ground
states are found. At finite temperatures the solid-fluid coexistence line
presents a zone with negative slope (which implies melting with decreasing in
volume) and the fluid phase has a temperature of maximum density, similar to
that in water.Comment: 11 pages, 15 figures included. To appear in PRE. Some figures in low
quality format. Better ones available upon request from [email protected]
Phase behavior and material properties of hollow nanoparticles
Effective pair potentials for hollow nanoparticles like the ones made from
carbon (fullerenes) or metal dichalcogenides (inorganic fullerenes) consist of
a hard core repulsion and a deep, but short-ranged, van der Waals attraction.
We investigate them for single- and multi-walled nanoparticles and show that in
both cases, in the limit of large radii the interaction range scales inversely
with the radius, , while the well depth scales linearly with . We predict
the values of the radius and the wall thickness at which the gas-liquid
coexistence disappears from the phase diagram. We also discuss unusual material
properties of the solid, which include a large heat of sublimation and a small
surface energy.Comment: Revtex, 13 pages with 8 Postscript files included, submitted to Phys.
Rev.
- …