739 research outputs found

    Stability of a hard-sphere binary quasicrystal

    Full text link
    The stability of a quasicrystalline structure, recently obtained in a molecular-dynamics simulation of rapid cooling of a binary melt, is analyzed for binary hard-sphere mixtures within a density-functional approach. It is found that this quasicrystal is metastable relative to crystalline and fluid phases for diameter ratios above 0.83. Such trend is partially reversed for lower diameter ratios, since the quasicrystal becomes stable with respect to the crystal but does not reach a coexistence with the fluid.Comment: 14 pages, 6 eps figures included. Revised version to appear in Phil. Mag.

    Virasoro and KdV

    No full text

    Rescaled density expansions and demixing in hard-sphere binary mixtures

    Get PDF
    The demixing transition of a binary fluid mixture of additive hard spheres is analyzed for different size asymmetries by starting from the exact low-density expansion of the pressure. Already within the second virial approximation the fluid separates into two phases of different composition with a lower consolute critical point. By successively incorporating the third, fourth, and fifth virial coefficients, the critical consolute point moves to higher values of the pressure and to lower values of the partial number fraction of the large spheres. When the exact low-density expansion of the pressure is rescaled to higher densities as in the Percus-Yevick theory, by adding more exact virial coefficients a different qualitative movement of the critical consolute point in the phase diagram is found. It is argued that the Percus-Yevick factor appearing in many empirical equations of state for the mixture has a deep influence on the location of the critical consolute point, so that the resulting phase diagram for a prescribed equation has to be taken with caution.Comment: 5 pages, 1 figure; to be published in The Journal of Chemical Physic

    Structure of Madrid basin (NE zone) derived from gravity data

    Get PDF
    [Abstract] Modelling of five profiles in the NE area of Madrid Basin shows that low anomalies are related to both the thicker sediments infill of the Basin and the basement rocks like gneiss and granites. The highs are related to thick sequences ofalternating slates and quarzites, outcropping or underlaying a thin cover. The main gradients are related to the marginal faults of the Basin. The existence of a granitic body and a NE-SW striking fault, was also detected. Out of the data obtained in the models, an isobaths map has been depicted of Madrid Basin which shows a fault bounded structure

    Stability of the hard-sphere icosahedral quasilattice

    Get PDF
    The stability of the hard-sphere icosahedral quasilattice is analyzed using the differential formulation of the generalized effective liquid approximation. We find that the icosahedral quasilattice is metastable with respect to the hard-sphere crystal structures. Our results agree with recent findings by McCarley and Ashcroft [Phys. Rev. B {\bf 49}, 15600 (1994)] carried out using the modified weighted density approximation.Comment: 15 pages, 2 figures available from authors upon request, (revtex), submitted to Phys. Rev.

    Impact of droop and scarf on the aerodynamic performance of compact aero-engine nacelles

    Get PDF
    Future turbofan engines will operate with larger engine bypass-ratios and lower specific thrust than current in-service architectures to reduce the specific fuel consumption. This will be achieved by increasing the fan diameter which will incur in an increment in nacelle size and a concomitant larger nacelle drag, weight and interaction effects with the airframe. Therefore, it is required to design compact nacelles which will not counteract the benefits obtained from the new engine cycles. Nacelle design is based on a set of aero-lines that in combination with droop and scarf result in a 3D design. Traditionally, this process was performed by the design of axisymmetric aero-lines. Nevertheless, there is an emerging need to carry out the design process for full 3D configurations to have a better understanding of the effect of droop and scarf angles on the nacelle drag characteristics. This paper presents a numerical method for the multi-objective optimisation of drooped and scarfed non-axisymmetric nacelle aero-engines. It uses intuitive Class Shape Tranformations (iCSTs) for the aero-engine geometry definition, multi-point aerodynamic simulation, a near-field nacelle drag extraction method and the NSGA-II genetic algorithm. The process has been employed to perform independent multi-objective optimisations of compact architectures at selected droop and scarf angle combinations. The multi-objective optimisation framework was successfully demonstrated for the new nacelle design challenge and the overall system was shown to enable the identification of the effects of droop and scarf on compact aero-engines. The proposed tool complements a set of technologies for the design, analysis and optimisation of future civil turbofans aiming at reduction of specific fuel consumption

    Phase behaviour of additive binary mixtures in the limit of infinite asymmetry

    Get PDF
    We provide an exact mapping between the density functional of a binary mixture and that of the effective one-component fluid in the limit of infinite asymmetry. The fluid of parallel hard cubes is thus mapped onto that of parallel adhesive hard cubes. Its phase behaviour reveals that demixing of a very asymmetric mixture can only occur between a solvent-rich fluid and a permeated large particle solid or between two large particle solids with different packing fractions. Comparing with hard spheres mixtures we conclude that the phase behaviour of very asymmetric hard-particle mixtures can be determined from that of the large component interacting via an adhesive-like potential.Comment: Full rewriting of the paper (also new title). 4 pages, LaTeX, uses revtex, multicol, epsfig, and amstex style files, to appear in Phys. Rev. E (Rapid Comm.
    • …
    corecore